Advertisements
Advertisements
Question
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{1, 2, 5} ∈ A
Options
Incorrect
Correct
Solution
This statement is incorrect.
Explanation:
{1, 2, 5} are element of set A.
{1, 2, 5} is a subset of set A.
APPEARS IN
RELATED QUESTIONS
{a, e} ⊂ {x : x is a vowel in the English alphabet}
{1, 2, 3} ⊂ {1, 3, 5}
Write down all the subsets of the following set:
{a}
How many elements has P(A), if A = Φ?
Write the following as intervals: {x : x ∈ R, 0 ≤ x < 7}
Write the following as intervals: {x : x ∈ R, 3 ≤ x ≤ 4}
Write the given intervals in set-builder form:
(–3, 0)
Write the following interval in set-builder form:
(6, 12]
Write the following interval in set-builder form:
[–23, 5)
Decide, among the following sets, which sets are subsets of one and another:
A = {x : x ∈ R and x satisfy x2 – 8x + 12 = 0},
B = {2, 4, 6}, C = {2, 4, 6, 8, …}, D = {6}.
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊂ B and B ∈ C, then A ∈ C
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊂ B and x ∉ B, then x ∉ A
If a set contains n elements, then write the number of elements in its power set.
Let A = {x : x ∈ N, x is a multiple of 3} and B = {x : x ∈ N and x is a multiple of 5}. Write \[A \cap B\]
If A and B are two sets such that \[A \subset B\], then write B' − A' in terms of A and B.
Let A and B be two sets having 4 and 7 elements respectively. Then write the maximum number of elements that \[A \cup B\] can have.
If A and B are two sets such that \[n \left( A \right) = 115, n \left( B \right) = 326, n \left( A - B \right) = 47,\] then write \[n \left( A \cup B \right)\]
If A = {1, 3, 5, B} and B = {2, 4}, then
If A = |1, 2, 3, 4, 5|, then the number of proper subsets of A is
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{a, b, c} _____ {b, c, d}
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is a triangle in a plane} _____ {x : x is a rectangle in the plane}
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{{3, 4}} ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
1 ∈ A
Let A = { 1, 2, { 3, 4}, 5 }. The following statement is correct or incorrect and why?
1 ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{1, 2, 3} ⊂ A
Write down all the subsets of the following set:
{a, b}
Given that N = {1, 2, 3, ..., 100}, then write the subset A of N, whose element are odd numbers.
Given that N = {1, 2, 3, ..., 100}, then write the subset B of N, whose element are represented by x + 2, where x ∈ N.
State true or false for the following statement given below:
Let R and S be the sets defined as follows:
R = {x ∈ Z | x is divisible by 2}
S = {y ∈ Z | y is divisible by 3}
then R ∩ S = φ
Given that N = {1, 2, 3, ... , 100}. Then write the subset of N whose element are perfect square numbers.
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by 4n
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a is less than 6 and a ∈ Y
Suppose A1, A2, ..., A30 are thirty sets each having 5 elements and B1, B2, ..., Bn are n sets each with 3 elements, let \[\bigcup\limits_{i=1}^{30} A_{i} = \bigcup\limits_{j=1}^{n} B_{j}\] = and each element of S belongs to exactly 10 of the Ai’s and exactly 9 of the B,’S. then n is equal to ______.
If X = {8n – 7n – 1 | n ∈ N} and Y = {49n – 49 | n ∈ N}. Then ______.
State True or False for the following statement.
Given that M = {1, 2, 3, 4, 5, 6, 7, 8, 9} and if B = {1, 2, 3, 4, 5, 6, 7, 8, 9}, then B ⊄ M.