Advertisements
Advertisements
Question
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊂ B and x ∉ B, then x ∉ A
Options
True
False
Solution
This statement is True.
Explanation:
Let A ⊂ B and x ∉ B.
Now, x ∉ A
If possible, suppose x ∈ A.
Then, x ∈ B, which is a contradiction as x ∉ B
∴ x ∉ A
APPEARS IN
RELATED QUESTIONS
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{2, 3, 4} _____ {1, 2, 3, 4, 5}
{a} ⊂ {a. b, c}
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{3, 4} ⊂ A
Write down all the subsets of the following set:
{a}
How many elements has P(A), if A = Φ?
Write the following as intervals: {x : x ∈ R, 0 ≤ x < 7}
Write the following as intervals: {x : x ∈ R, 3 ≤ x ≤ 4}
Write the given intervals in set-builder form:
(–3, 0)
Write the given intervals in set-builder form:
[6, 12]
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊂ B and B ⊂ C, then A ⊂ C
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊄ B and B ⊄ C, then A ⊄ C
If a set contains n elements, then write the number of elements in its power set.
Let A = {x : x ∈ N, x is a multiple of 3} and B = {x : x ∈ N and x is a multiple of 5}. Write \[A \cap B\]
Let A and B be two sets having 3 and 6 elements respectively. Write the minimum number of elements that \[A \cup B\]
If A = {x ∈ C : x2 = 1} and B = {x ∈ C : x4 = 1}, then write A − B and B − A.
If A and B are two sets such that \[A \subset B\], then write B' − A' in terms of A and B.
Let A and B be two sets having 4 and 7 elements respectively. Then write the maximum number of elements that \[A \cup B\] can have.
If \[A = \left\{ \left( x, y \right) : y = \frac{1}{x}, 0 \neq x \in R \right\}\]and\[B = \left\{ \left( x, y \right) : y = - x, x \in R \right\}\] then write\[A \cap B\]
If \[A = \left\{ \left( x, y \right) : y = e^x , x \in R \right\} and B = \left\{ \left( x, y \right) : y = e^{- x} , x \in R \right\}\]write\[A \cap B\]
If A and B are two sets such that \[n \left( A \right) = 20, n \left( B \right) = 25\]\text{ and } \[n \left( A \cup B \right) = 40\], then write \[n \left( A \cap B \right)\]
If A and B are two sets such that \[n \left( A \right) = 115, n \left( B \right) = 326, n \left( A - B \right) = 47,\] then write \[n \left( A \cup B \right)\]
In set-builder method the null set is represented by
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is an equilateral triangle in a plane} _____ {x : x is a triangle in the same plane}
Let A = { 1, 2, { 3, 4}, 5 }. The following statement is correct or incorrect and why?
1 ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{1, 2, 5} ∈ A
Write down all the subsets of the following set:
{a, b}
Write down all the subsets of the following set:
{1, 2, 3}
Write down all the subsets of the following set:
Φ
Write the following interval in Set-Builder form:
(– 3, 0)
Given that N = {1, 2, 3, ..., 100}, then write the subset B of N, whose element are represented by x + 2, where x ∈ N.
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a ∈ Y but a2 ∉ Y
Suppose A1, A2, ..., A30 are thirty sets each having 5 elements and B1, B2, ..., Bn are n sets each with 3 elements, let \[\bigcup\limits_{i=1}^{30} A_{i} = \bigcup\limits_{j=1}^{n} B_{j}\] = and each element of S belongs to exactly 10 of the Ai’s and exactly 9 of the B,’S. then n is equal to ______.
State True or False for the following statement.
If A is any set, then A ⊂ A.
State True or False for the following statement.
Given that M = {1, 2, 3, 4, 5, 6, 7, 8, 9} and if B = {1, 2, 3, 4, 5, 6, 7, 8, 9}, then B ⊄ M.