Advertisements
Advertisements
प्रश्न
{x : x is an even natural number less than 6} ⊂ {x : x is a natural number which divides 36}
पर्याय
True
False
उत्तर
This statement is True.
Explanation:
Let A = {x : x is an even natural number less than 6}
∴ A = {2, 4} and B = {x : x is a natural number which divides 36}
B = {1, 2, 3, 4, 6, 9, 12, 18, 36}
Here, every element of A is an element of B.
∴ A ⊂ B
APPEARS IN
संबंधित प्रश्न
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{2, 3, 4} _____ {1, 2, 3, 4, 5}
{a, b} ⊄ {b, c, a}
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{3, 4} ⊂ A
Write down all the subsets of the following set:
{a}
How many elements has P(A), if A = Φ?
Write the following as intervals: {x: x ∈ R, –12 < x < –10}
Write the following interval in set-builder form:
[–23, 5)
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊂ B and B ∈ C, then A ∈ C
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊄ B and B ⊄ C, then A ⊄ C
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If x ∈ A and A ⊄ B, then x ∈ B
If A and B are two sets such that \[A \subset B\], then write B' − A' in terms of A and B.
Let A and B be two sets having 4 and 7 elements respectively. Then write the maximum number of elements that \[A \cup B\] can have.
If \[A = \left\{ \left( x, y \right) : y = \frac{1}{x}, 0 \neq x \in R \right\}\]and\[B = \left\{ \left( x, y \right) : y = - x, x \in R \right\}\] then write\[A \cap B\]
If A and B are two sets such that \[n \left( A \right) = 20, n \left( B \right) = 25\]\text{ and } \[n \left( A \cup B \right) = 40\], then write \[n \left( A \cap B \right)\]
If A and B are two sets such that \[n \left( A \right) = 115, n \left( B \right) = 326, n \left( A - B \right) = 47,\] then write \[n \left( A \cup B \right)\]
If A = {1, 3, 5, B} and B = {2, 4}, then
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{a, b, c} _____ {b, c, d}
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is a student of Class XI of your school} ____ {x : x student of your school}
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is a circle in the plane} _____ {x : x is a circle in the same plane with radius 1 unit}
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is a triangle in a plane} _____ {x : x is a rectangle in the plane}
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is an equilateral triangle in a plane} _____ {x : x is a triangle in the same plane}
Let A = { 1, 2, { 3, 4}, 5 }. The following statement is correct or incorrect and why?
1 ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{1, 2, 3} ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{Φ} ⊂ A
Write down all the subsets of the following set:
{a, b}
Write the following interval in Set-Builder form:
(– 3, 0)
State true or false for the following statement given below:
Let R and S be the sets defined as follows:
R = {x ∈ Z | x is divisible by 2}
S = {y ∈ Z | y is divisible by 3}
then R ∩ S = φ
Given that N = {1, 2, 3, ... , 100}. Then write the subset of N whose elements are even numbers.
Given that N = {1, 2, 3, ... , 100}. Then write the subset of N whose element are perfect square numbers.
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by n – 1
Suppose A1, A2, ..., A30 are thirty sets each having 5 elements and B1, B2, ..., Bn are n sets each with 3 elements, let \[\bigcup\limits_{i=1}^{30} A_{i} = \bigcup\limits_{j=1}^{n} B_{j}\] = and each element of S belongs to exactly 10 of the Ai’s and exactly 9 of the B,’S. then n is equal to ______.
State True or False for the following statement.
The sets {1, 2, 3, 4} and {3, 4, 5, 6} are equal.