मराठी

Write the following interval in set-builder form: [–23, 5) - Mathematics

Advertisements
Advertisements

प्रश्न

Write the following interval in set-builder form:

[–23, 5)

बेरीज

उत्तर

The interval [-23, 5) can be written in set-builder form as {x : x ∈ R, –23 ≤ x < 5}.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Sets - Exercise 1.3 [पृष्ठ १३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 1 Sets
Exercise 1.3 | Q 7.4 | पृष्ठ १३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

{a, e} ⊂ {x : x is a vowel in the English alphabet}


{a} ⊂ {a. b, c}


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{3, 4} ⊂ A


Write down all the subsets of the following set:

{a}


Write the following as interval:

{x : x ∈ R, – 4 < x ≤ 6}


Write the following as intervals:  {x: x ∈ R, –12 < x < –10}


Write the following as intervals: {x : x ∈ R, 3 ≤ x ≤ 4}


Write the given intervals in set-builder form:

[6, 12]


Write the following interval in set-builder form:

(6, 12]


Decide, among the following sets, which sets are subsets of one and another:

A = {x : x ∈ R and x satisfy x2 – 8x + 12 = 0},

B = {2, 4, 6}, C = {2, 4, 6, 8, …}, D = {6}.


Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If x ∈ A and A ∈ B, then x ∈ B


If \[A = \left\{ \left( x, y \right) : y = \frac{1}{x}, 0 \neq x \in R \right\}\]and\[B = \left\{ \left( x, y \right) : y = - x, x \in R \right\}\] then write\[A \cap B\]


If A and B are two sets such that \[n \left( A \right) = 20, n \left( B \right) = 25\]\text{ and } \[n \left( A \cup B \right) = 40\], then write \[n \left( A \cap B \right)\] 


In set-builder method the null set is represented by


Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:

{a, b, c} _____ {b, c, d}


Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:

{x : x is a circle in the plane} _____ {x : x is a circle in the same plane with radius 1 unit}


Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:

{x : x is a triangle in a plane} _____ {x : x is a rectangle in the plane}


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{3, 4} ∈ A


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{{3, 4}} ⊂ A


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

1 ∈ A


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{1, 2, 5} ⊂ A


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

{Φ} ⊂ A


Write down all the subsets of the following set:

Φ


Write the following interval in Set-Builder form:

(– 3, 0)


State true or false for the following statement given below:

Let R and S be the sets defined as follows:
R = {x ∈ Z | x is divisible by 2}
S = {y ∈ Z | y is divisible by 3}
then R ∩ S = φ


Given that N = {1, 2, 3, ... , 100}. Then write the subset of N whose element are perfect square numbers.


If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by n – 1


If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.

a + 1 = 6, a ∈ Y


Suppose A1, A2, ..., A30 are thirty sets each having 5 elements and B1, B2, ..., Bn are n sets each with 3 elements, let \[\bigcup\limits_{i=1}^{30} A_{i} = \bigcup\limits_{j=1}^{n} B_{j}\] = and each element of S belongs to exactly 10 of the Ai’s and exactly 9 of the B,’S. then n is equal to ______.


State True or False for the following statement.

If A is any set, then A ⊂ A.


State True or False for the following statement.

Given that M = {1, 2, 3, 4, 5, 6, 7, 8, 9} and if B = {1, 2, 3, 4, 5, 6, 7, 8, 9}, then B ⊄ M.


State True or False for the following statement.

The sets {1, 2, 3, 4} and {3, 4, 5, 6} are equal.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×