Advertisements
Advertisements
प्रश्न
If \[A = \left\{ \left( x, y \right) : y = \frac{1}{x}, 0 \neq x \in R \right\}\]and\[B = \left\{ \left( x, y \right) : y = - x, x \in R \right\}\] then write\[A \cap B\]
उत्तर
We have:
\[A = \left\{ \left( x, y \right) : y = \frac{1}{x}, 0 \neq x \in R \right\}\]
\[\left( 1, 1 \right), \left( 2, \frac{1}{2} \right), \left( 3, \frac{1}{3} \right), \left( 4, \frac{1}{4} \right)\]And, \[B = \left\{ \left( x, y \right) : y = - x, x \in R \right\}\]
=\[\left\{ \left( 1, - 1 \right), \left( 2, - 2 \right), \left( 3, - 3 \right), \left( 4, - 4 \right), . . . \right\}\]
Thus, we get:
\[A \cap B\]=\[\varnothing\]
APPEARS IN
संबंधित प्रश्न
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{2, 3, 4} _____ {1, 2, 3, 4, 5}
{a} ⊂ {a. b, c}
{x : x is an even natural number less than 6} ⊂ {x : x is a natural number which divides 36}
How many elements has P(A), if A = Φ?
Write the following as intervals: {x : x ∈ R, 0 ≤ x < 7}
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If x ∈ A and A ∈ B, then x ∈ B
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If x ∈ A and A ⊄ B, then x ∈ B
Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If A ⊂ B and x ∉ B, then x ∉ A
Write the number of elements in the power set of null set.
Let A = {x : x ∈ N, x is a multiple of 3} and B = {x : x ∈ N and x is a multiple of 5}. Write \[A \cap B\]
Let A and B be two sets having 3 and 6 elements respectively. Write the minimum number of elements that \[A \cup B\]
If A = {x ∈ C : x2 = 1} and B = {x ∈ C : x4 = 1}, then write A − B and B − A.
Let A and B be two sets having 4 and 7 elements respectively. Then write the maximum number of elements that \[A \cup B\] can have.
If \[A = \left\{ \left( x, y \right) : y = e^x , x \in R \right\} and B = \left\{ \left( x, y \right) : y = e^{- x} , x \in R \right\}\]write\[A \cap B\]
If A and B are two sets such that \[n \left( A \right) = 115, n \left( B \right) = 326, n \left( A - B \right) = 47,\] then write \[n \left( A \cup B \right)\]
If A = {1, 3, 5, B} and B = {2, 4}, then
If A = |1, 2, 3, 4, 5|, then the number of proper subsets of A is
In set-builder method the null set is represented by
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{a, b, c} _____ {b, c, d}
Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:
{x : x is an equilateral triangle in a plane} _____ {x : x is a triangle in the same plane}
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
1 ∈ A
Let A = { 1, 2, { 3, 4}, 5 }. The following statement is correct or incorrect and why?
1 ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{1, 2, 5} ∈ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
Φ ⊂ A
Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?
{Φ} ⊂ A
Write down all the subsets of the following set:
Φ
Write the following interval in Set-Builder form:
(– 3, 0)
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by 4n
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by n + 6
If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by n – 1
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a ∈ Y but a2 ∉ Y
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a + 1 = 6, a ∈ Y
If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.
a is less than 6 and a ∈ Y
State True or False for the following statement.
If A is any set, then A ⊂ A.
State True or False for the following statement.
Q ∪ Z = Q, where Q is the set of rational numbers and Z is the set of integers.