मराठी

Write the Number of Elements in the Power Set of Null Set. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the number of elements in the power set of null set. 

उत्तर

We know that a set of n elements has \[2^n\] subsets or elements.
A null set has no element(s) in it.
∴ Number of elements in the power set of null set =\[2^0 = 1\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Sets - Exercise 1.09 [पृष्ठ ४९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 1 Sets
Exercise 1.09 | Q 2 | पृष्ठ ४९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

{a, e} ⊂ {x : x is a vowel in the English alphabet}


{a, b} ⊄ {b, c, a}


{x : x is an even natural number less than 6} ⊂ {x : x is a natural number which divides 36}


How many elements has P(A), if A = Φ?


Write the following as interval:

{x : x ∈ R, – 4 < x ≤ 6}


Write the following interval in set-builder form:

[–23, 5)


Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If A ⊂ B and B ∈ C, then A ∈ C


Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If A ⊄ B and B ⊄ C, then A ⊄ C


Determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.

If A ⊂ B and x ∉ B, then x ∉ A


Let A and B be two sets having 3 and 6 elements respectively. Write the minimum number of elements that \[A \cup B\] 


If A and B are two sets such that \[A \subset B\], then write B' − A' in terms of A and B.


Let A and B be two sets having 4 and 7 elements respectively. Then write the maximum number of elements that \[A \cup B\] can have. 


If \[A = \left\{ \left( x, y \right) : y = \frac{1}{x}, 0 \neq x \in R \right\}\]and\[B = \left\{ \left( x, y \right) : y = - x, x \in R \right\}\] then write\[A \cap B\]


If \[A = \left\{ \left( x, y \right) : y = e^x , x \in R \right\} and B = \left\{ \left( x, y \right) : y = e^{- x} , x \in R \right\}\]write\[A \cap B\] 


If A and B are two sets such that \[n \left( A \right) = 20, n \left( B \right) = 25\]\text{ and } \[n \left( A \cup B \right) = 40\], then write \[n \left( A \cap B \right)\] 


If A and B are two sets such that \[n \left( A \right) = 115, n \left( B \right) = 326, n \left( A - B \right) = 47,\] then write \[n \left( A \cup B \right)\] 


The number of subsets of a set containing n elements is 


For any two sets A and B,\[A \cap \left( A \cup B \right) =\]


If A = |1, 2, 3, 4, 5|, then the number of proper subsets of A is 


Make correct statement by filling in the symbols ⊂ or ⊄ in the blank space:

{x : x is an even natural number} _____ {x : x is an integer}


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

1 ∈ A


Let A = { 1, 2, { 3, 4}, 5 }. The following statement is correct or incorrect and why?

1 ⊂ A


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

Φ ∈ A


Let A = {1, 2, {3, 4}, 5}. The following statement is correct or incorrect and why?

Φ ⊂ A


Write down all the subsets of the following set:

{1, 2, 3}


Given that N = {1, 2, 3, ..., 100}, then write the subset A of N, whose element are odd numbers.


If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by `n/2`


If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions.

a + 1 = 6, a ∈ Y


Suppose A1, A2, ..., A30 are thirty sets each having 5 elements and B1, B2, ..., Bn are n sets each with 3 elements, let \[\bigcup\limits_{i=1}^{30} A_{i} = \bigcup\limits_{j=1}^{n} B_{j}\] = and each element of S belongs to exactly 10 of the Ai’s and exactly 9 of the B,’S. then n is equal to ______.


If X = {8n – 7n – 1 | n ∈ N} and Y = {49n – 49 | n ∈ N}. Then ______.


State True or False for the following statement.

Q ∪ Z = Q, where Q is the set of rational numbers and Z is the set of integers.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×