हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Particle a with a Charge of 2.0 × 10−6 C and a Mass of 100 G is Placed at the Bottom of a Smooth Inclined Plane of Inclination 30°. - Physics

Advertisements
Advertisements

प्रश्न

A particle A with a charge of 2.0 × 10−6 C and a mass of 100 g is placed at the bottom of a smooth inclined plane of inclination 30°. Where should another particle B, with the same charge and mass, be placed on the incline so that it may remain in equilibrium? 

टिप्पणी लिखिए

उत्तर

Given:
Magnitude of charge on particles A and B, q =  2.0 × 10−6 C
Mass of particles A and B, m = 100 g = 0.1 kg
Let the separation between the charges be r along the plane. 
By Coulomb's Law, force (F) on B due to A,      

\[F = \frac{1}{4\pi \epsilon_0}\frac{q^2}{r^2}\] For equilibrium:

For equilibrium along the plane,

\[F = \text{ mg}\sin\theta\] 

\[ \Rightarrow   \frac{9 \times {10}^9 \times \left( 2 \times {10}^{- 6} \right)^2}{r^2} = 0 . 1 \times 9 . 8 \times \frac{1}{2}\] 

\[ \Rightarrow  r^{{}_2}  = 7 . 34 \times  {10}^{- 2} \]m

\[ \Rightarrow   r = 0 . 271 \]m

So, the charge should be placed at a distance of 27 cm from the bottom.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Electric Field and Potential - Exercises [पृष्ठ १२२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 7 Electric Field and Potential
Exercises | Q 30 | पृष्ठ १२२

संबंधित प्रश्न

  1. Two insulated charged copper spheres A and B have their centers separated by a distance of 50 cm. What is the mutual force of electrostatic repulsion if the charge on each is 6.5 × 10−7 C? The radii of A and B are negligible compared to the distance of separation.
  2. What is the force of repulsion if each sphere is charged double the above amount, and the distance between them is halved?

A particle of mass m and charge (−q) enters the region between the two charged plates initially moving along x-axis with speed vx (like particle 1 in the fig.). The length of plate is L and an uniform electric field E is maintained between the plates. Show that the vertical deflection of the particle at the far edge of the plate is qEL2/(2m`"v"_"x"^2`).


Write any two important points of similarities and differences each between Coulomb's law for the electrostatic field and Biot-Savart's law of the magnetic field ?


Two identical pith balls are charged by rubbing one against the other. They are suspended from a horizontal rod through two strings of length 20 cm each, the separation between the suspension points being 5 cm. In equilibrium, the separation between the balls is 3 cm. Find the mass of each ball and the tension in the strings. The charge on each ball has a magnitude 2.0 × 10−8 C.


Two particles A and B, each carrying a charge Q, are held fixed with a separation dbetween them. A particle C of mass m and charge q is kept at the middle point of the line AB.   Under what conditions will the particle C execute simple harmonic motion if it is released after such a small displacement? Find the time period of the oscillations if these conditions are satisfied.


A water particle of mass 10.0 mg and with a charge of 1.50 × 10−6 C stays suspended in a room. What is the magnitude of electric field in the room? What is its direction ? 


Two identical particles, each with a charge of 2.0 × 10−4 C and mass of 10 g, are kept at a separation of 10 cm and then released. What would be the speed of the particles when the separation becomes large?


Define a unit charge.


Three charges +Q, q, +Q are placed respectively, at distance, 0, d/2 and d from the origin, on the X-axis. If the net force experienced by +Q, placed at x = 0, is zero then value of q is ____________.


Coulomb’s law is true for ______.

Two identical thin rings, each of radius a meter, are coaxially placed at a distance R meter apart. If Q1 coulomb and Q2 coulomb are respectively the charges uniformly spread on the two rings, the work done in moving a charge q coulomb from the centre of one ring to that of the other is ______.


Coulomb's law is given by F = k q1q2 rn where n is 


Two charge – 10c and + 10 c are placed 10 cm apart. Potential at centre of the line joining the two charge is:-


There is another useful system of units, besides the SI/mks A system, called the cgs (centimeter-gram-second) system. In this system Coloumb’s law is given by

F = `(Qq)/r^2 hatr`

where the distance r is measured in cm (= 10–2 m), F in dynes (= 10–5 N) and the charges in electrostatic units (es units), where 1 es unit of charge = `1/([3]) xx 10^-9 C`

The number [3] actually arises from the speed of light in vaccum which is now taken to be exactly given by c = 2.99792458 × 108 m/s. An approximate value of c then is c = [3] × 108 m/s.

(i) Show that the coloumb law in cgs units yields

1 esu of charge = 1 (dyne)1/2 cm.

Obtain the dimensions of units of charge in terms of mass M, length L and time T. Show that it is given in terms of fractional powers of M and L.

(ii) Write 1 esu of charge = x C, where x is a dimensionless number. Show that this gives

`1/(4pi ∈_0) = 10^-9/x^2 (N*m^2)/C^2`

With `x = 1/([3]) xx 10^-9`, we have `1/(4pi ∈_0) = [3]^2 xx 10^9 (Nm^2)/C^2`

or, `1/(4pi ∈_0) = (2.99792458)^2 xx 10^9 (Nm^2)/C^2` (exactly).


According to Coulomb's law, which is the correct relation for the following figure?


Two point charges Q each are placed at a distance d apart. A third point charge q is placed at a distance x from the mid-point on the perpendicular bisector. The value of x at which charge q will experience the maximum Coulomb's force is ______.


What is meant by the statement: "Relative permittivity of water is 81"?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×