Advertisements
Advertisements
प्रश्न
A passenger train takes one hour less for a journey of 150 km if its speed is increased by 5 km/hr from its usual speed. Find the usual speed of the train.
उत्तर
Let the usual speed of train be x km/hr then
Increased speed of the train = (x + 5)km/hr
Time taken by the train under usual speed to cover 150km = `150/x`hr
Time taken by the train under increased speed to cover 150km = `150/(x + 5)`hr
Therefore,
`150/x-150/(x+5)=1`
`(150(x+5)-150x)/(x(x+5))=1`
`(150x+750-150)/(x^2+5x)=1`
`750/(x^2+5x)=1`
750 = x2 + 5x
x2 + 5x - 750 = 0
x2 - 25x + 30x - 750 = 0
x(x - 25) + 30(x - 25) = 0
(x - 25)(x + 30) = 0
So, either
x - 25 = 0
x = 25
Or
x + 30 = 0
x = -30
But, the speed of the train can never be negative.
Hence, the usual speed of train is x = 25km/hr
APPEARS IN
संबंधित प्रश्न
Find the roots of the following quadratic equation by factorisation:
`2x^2 – x + 1/8 = 0`
Solve the following quadratic equations by factorization:
25x(x + 1) = -4
Solve the following quadratic equations by factorization:
`2/2^2-5/x+2=0`
Rs. 9000 were divided equally among a certain number of persons. Had there been 20 more persons, each would have got Rs. 160 less. Find the original number of persons.
Solve the following quadratic equation by factorisation.
`sqrt2 x^2 + 7x + 5sqrt2 = 0` to solve this quadratic equation by factorisation, complete the following activity.
`sqrt2 x^2 + 7x + 5sqrt2 = 0`
`sqrt2x^2+square+square+5sqrt2=0`
`x("______") + sqrt2 ("______") = 0`
(______) (x + 2) = 0
(______) = 0 or (x + 2) = 0
∴ x = `square` or x = - 2
∴ `square` and `sqrt(-2)` are roots of the equation.
Solve the following equation: 4x2 - 13x - 12 = 0
Solve the following equation: a2x2 - 3abx + 2b2 = 0
Car A travels x km for every litre of petrol, while car B travels (x + 5) km for every litre of petrol.
Write down the number of litres of petrol used by car A and car B in covering a distance of 400 km.
Solve the following equation by factorization
`4sqrt(3)x^2 + 5x - 2sqrt(3)` = 0
Solve the following equation by factorization
`a/(ax - 1) + b/(bx - 1) = a + b, a + b ≠ 0, ab ≠ 0`