हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

A shopkeeper in a Nuts and Spices shop makes gift packs of cashew nuts, raisins and almonds. Pack I contains 100 gm of cashew nuts, 100 gm of raisins and 50 gm of almonds. Pack-II - Mathematics

Advertisements
Advertisements

प्रश्न

A shopkeeper in a Nuts and Spices shop makes gift packs of cashew nuts, raisins and almonds. Pack I contains 100 gm of cashew nuts, 100 gm of raisins and 50 gm of almonds. Pack-II contains 200 gm of cashew nuts, 100 gm of raisins and 100 gm of almonds. Pack-III contains 250 gm of cashew nuts, 250 gm of raisins and 150 gm of almonds. The cost of 50 gm of cashew nuts is ₹ 50, 50 gm of raisins is ₹ 10, and 50 gm of almonds is ₹ 60. What is the cost of each gift pack?

योग

उत्तर

  Cashew nuts Raisins Almonds
Pack - I 100 gm 100 gm 50 gm
Pack - II 200 gm 100 gm 100 gm
Pack - III 250 gm 250 gm 150 gm

Cashew   50 gm     ₹ 50

Raisins    50 gm     ₹ 10

Almonds 50 gm    ₹ 60

∴ Cost per gram:

Cashew   1 gm   ₹ 1

Raisins    1 gm   ₹ `1/5`

Almonds 1 gm  ₹ `6/5`

∴ Cost of each pack:

`[(100, 100, 50),(200, 100, 100),(250, 250, 150)] [(1),(1/5),(6/5)]`

= `[(100 + 20 + 60),(200 + 20 + 120),(250 + 50 + 180)] = [(180),(340),(480)]`

∴ Cost of pack I = ₹ 180

Cost of pack II = ₹ 340

Cost of pack III = ₹ 480

shaalaa.com
Matrices
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Matrices and Determinants - Exercise 7.1 [पृष्ठ १९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 7 Matrices and Determinants
Exercise 7.1 | Q 24 | पृष्ठ १९

संबंधित प्रश्न

Construct a 3 × 3 matrix whose elements are given by aij = |i – 2j|


If A = `[(sqrt(7), - 3),(- sqrt(5), 2),(sqrt(3), -5)]` then find the transpose of – A


If A = `[(1, 9),(3, 4),(8, -3)]`, B = `[(5, 7),(3, 3),(1, 0)]` then verify that A + (– A) = (– A) + A = 0


If A = `[(0, 4, 9),(8, 3, 7)]`, B = `[(7, 3, 8),(1, 4, 9)]` find the value of 3A – 9B


Let A = `[(1, 2),(1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, 2)]` Show that A(BC) = (AB)C


Let A = `[(1, 2),(1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, 2)]` Show that (A – B)C = AC – BC


Transpose of a column matrix is


Consider the matrix Aα = `[(cos alpha, - sin alpha),(sin alpha, cos alpha)]` Find all possible real values of α satisfying the condition `"A"_alpha + "A"_alpha^"T"` = I


If A = `[(4, 2),(-1, x)]` and such that (A – 2I)(A – 3I) = 0, find the value of x


Give your own examples of matrices satisfying the following conditions:
A and B such that AB = 0 = BA, A ≠ 0 and B ≠ 0


If AT = `[(4, 5),(-1, 0),(2, 3)]` and B = `[(2, -1, 1),(7, 5, -2)]`, veriy the following 

(A + B)T = AT + BT = BT + AT


If A is a 3 × 4 matrix and B is a matrix such that both ATB and BAT are defined, what is the order of the matrix B?


If A and B are symmetric matrices of same order, prove that AB – BA is a skew-symmetric matrix


Choose the correct alternative:
If A and B are symmetric matrices of order n, where (A ≠ B), then


Choose the correct alternative:
A root of the equation `|(3 - x, -6, 3),(-6, 3 - x, 3),(3, 3, -6 - x)|` = 0 is


A matrix is an ordered:-


If the matrix 'A' is both symmetric and strew symmetric then.


Let A = `[(cosα, -sinα),(sinα, cosα)]`, α ∈ R such that A32 = `[(0, -1),(1, 0)]`. Then a value of α is ______.


If A = `[(1, 2),(2, 3)]` and A2 – kA – I2 = 0, then value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×