हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Consider the matrix Aα = [cosα-sinαsinαcosα] Find all possible real values of α satisfying the condition AATAα+AαT = I - Mathematics

Advertisements
Advertisements

प्रश्न

Consider the matrix Aα = `[(cos alpha, - sin alpha),(sin alpha, cos alpha)]` Find all possible real values of α satisfying the condition `"A"_alpha + "A"_alpha^"T"` = I

योग

उत्तर

Aα = `[(cos alpha, - sin alpha),(sin alpha, cos alpha)]`

`"A"_alpha^"T" = [(cos alpha, sin alpha),(-sin alpha, cos alpha)]`

`"A"_alpha + "A"_alpha^"T" = [(cos alpha, - sin alpha),(sin alpha, cos alpha)] + [(cos alpha, sin alpha),(-sin alpha, cos alpha)]`

= `[(cos alpha + cos alpha, -sinalpha + sin alpha),(sin alpha - sin alpha, cos alpha + cos alpha)]`

`"A"_alpha + "A"_alpha^"T" = [(2cos alpha, 0),(0, 2 cos alpha)]`

Given `"A"_alpha + "A"_alpha^"T"` = I

∴ `[(2cos alpha, 0),(0, 2 cos alpha)] = [(1, 0),(0, 1)]`

`2 cos  alpha` = 1

⇒ `cos allpha = 1/2`

The general solution is α = `2"n"  pi +-  pi/3, "n" ∈ "Z"`

shaalaa.com
Matrices
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Matrices and Determinants - Exercise 7.1 [पृष्ठ १८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 7 Matrices and Determinants
Exercise 7.1 | Q 6. (ii) | पृष्ठ १८

संबंधित प्रश्न

In the matrix A = `[(8, 9, 4, 3),(- 1, sqrt(7), sqrt(3)/2, 5),(1, 4, 3, 0),(6, 8, -11, 1)]`, Write the elements a22, a23, a24, a34, a43, a44


Construct a 3 × 3 matrix whose elements are given by aij = |i – 2j|


Find the values of x, y, z if `[(x), (y  – z), (z + 3)] + [(y), (4), (3)] = [(4), (8), (16)]`


Let A = `[(1, 2),(1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, 2)]` Show that A(BC) = (AB)C


Let A = `[(1, 2),(1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, 2)]` Show that (A – B)C = AC – BC


Let A = `[(1, 2),(1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, 2)]` Show that (A – B)T = AT – BT


If A = `[(costheta, theta),(0, costheta)]`, B = `[(sintheta, 0),(0, sintheta)]` then show that A2 + B2 = I


If A = `[("a", "b"),("c", "d")]` and I = `[(1, 0),(0, 1)]` show that A2 – (a + d)A = (bc – ad)I2


Construct an m × n matrix A = [aij], where aij is given by

aij = `("i" - 2"j")^2/2` with m = 2, n = 3


Consider the matrix Aα = `[(cos alpha, - sin alpha),(sin alpha, cos alpha)]` Show that `"A"_alpha "A"_beta = "A"_((alpha + beta))`


Give your own examples of matrices satisfying the following conditions:
A and B such that AB = 0 = BA, A ≠ 0 and B ≠ 0


Show that f(x) f(y) = f(x + y), where f(x) = `[(cosx, -sinx, 0),(sinx, cosx, 0),(0, 0, 1)]`


If AT = `[(4, 5),(-1, 0),(2, 3)]` and B = `[(2, -1, 1),(7, 5, -2)]`, veriy the following 

(BT)T = B


Find the matrix A such that `[(2, -1),(1, 0),(-3, 4)]"A"^"T" = [(-1, -8, -10),(1, 2, -5),(9, 22, 15)]`


If A = `[(1, 2, 2),(2, 1, -2),(x, 2, y)]` is a matrix such that AAT = 9I, find the values of x and y


Construct the matrix A = [aij]3×3, where aij = 1 – j. State whether A is symmetric or skew–symmetric


If A and B are symmetric matrices of same order, prove that AB + BA is a symmetric matrix


Choose the correct alternative:
if A = `[(lambda, 1),(-1, -lambda)]`, then for what value of λ, A2 = 0 ?


Choose the correct alternative:
Let A and B be two symmetric matrices of same order. Then which one of the following statement is not true?


Let (p1, q1, r1) and (p2, q2, r2) are satisfying `|(1, p, p^2),(1, q, q^2),(1, r, r^2)|` = 6 (where pi, qi ri ∈ N and pi < qi < ri and i = 1, 2) and point (p1, q1, r1) lies on the plane 2x + 3y + 6z = k, and point (p2, q2, r2) lies on the plane 2x + 3y + 6z = k2 (where p1 = p2 = 1) If distance between these planes is 'd', then value of (210d) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×