Advertisements
Advertisements
प्रश्न
Construct the matrix A = [aij]3×3, where aij = 1 – j. State whether A is symmetric or skew–symmetric
उत्तर
A = [aij]3×3
Where aij = 1 – j
A = `[("a"_11, "a"_12, "a"_13),("a"_21, "a"_22, "a"_23),("a"_31, "a"_32, "a"_33)]`
aij = i – j
a11 = 1 – 1 = 1
a12 = 1 – 2 = – 1
a13 = 1 – 3 = – 2
a21 = 2 – 1 = 1
a22 = 2 – 2 = 1
a23 = 2 – 3 = – 1
a31 = 3 – 1 = 2
a32 = 3 – 2 = 1
a33 = 3 – 3 = 0
A = `[(0, -1, -2),(1, 0, -1),(2, 1, 0)]`
AT = `[(0, 1, 2),(-1, 0, 1),(-2, -1, 0)]`
AT = `- [(0, -1, -2),(1, 0, -1),(2, 1, 0)]`
AT = – A
∴ A is skew-symmetric.
APPEARS IN
संबंधित प्रश्न
In the matrix A = `[(8, 9, 4, 3),(- 1, sqrt(7), sqrt(3)/2, 5),(1, 4, 3, 0),(6, 8, -11, 1)]`, Write the elements a22, a23, a24, a34, a43, a44
If A = `[(sqrt(7), - 3),(- sqrt(5), 2),(sqrt(3), -5)]` then find the transpose of – A
Find X and Y if X + Y = `[(7, 0),(3, 5)]` and X – Y = `[(3, 0),(0, 4)]`
If A = `[(0, 4, 9),(8, 3, 7)]`, B = `[(7, 3, 8),(1, 4, 9)]` find the value of 3A – 9B
Find the values of x, y, z if `[(x), (y – z), (z + 3)] + [(y), (4), (3)] = [(4), (8), (16)]`
Let A = `[(1, 2),(1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, 2)]` Show that (A – B)T = AT – BT
If A = `[(costheta, theta),(0, costheta)]`, B = `[(sintheta, 0),(0, sintheta)]` then show that A2 + B2 = I
If A = `[(costheta, sintheta),(-sintheta, costheta)]` prove that AAT = I
If A = `[(5, 2, 9),(1, 2, 8)]`, B = `[(1, 7),(1, 2),(5, -1)]` verify that (AB)T = BT AT
A = `[(3, 0),(4, 5)]`, B = `[(6, 3),(8, 5)]`, C = `[(3, 6),(1, 1)]` find the matrix D, such that CD – AB = 0
Construct an m × n matrix A = [aij], where aij is given by
aij = `|3"i" - 4"j"|/4` with m = 3, n = 4
If A = `[(4, 2),(-1, x)]` and such that (A – 2I)(A – 3I) = 0, find the value of x
Give your own examples of matrices satisfying the following conditions:
A and B such that AB ≠ BA
Show that f(x) f(y) = f(x + y), where f(x) = `[(cosx, -sinx, 0),(sinx, cosx, 0),(0, 0, 1)]`
Express the following matrices as the sum of a symmetric matrix and a skew-symmetric matrix:
`[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`
If A and B are symmetric matrices of same order, prove that AB – BA is a skew-symmetric matrix
Choose the correct alternative:
If A and B are two matrices such that A + B and AB are both defined, then
Choose the correct alternative:
if A = `[(lambda, 1),(-1, -lambda)]`, then for what value of λ, A2 = 0 ?
Choose the correct alternative:
If the points (x, – 2), (5, 2), (8, 8) are collinear, then x is equal to
Choose the correct alternative:
If a ≠ b, b, c satisfy `|("a", 2"b", 2"c"),(3, "b", "c"),(4, "a", "b")|` = 0, then abc =