Advertisements
Advertisements
प्रश्न
Let A = `[(1, 2),(1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, 2)]` Show that (A – B)T = AT – BT
उत्तर
A = `[(1, 2),(1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, 2)]`
A – B = `[(1, 2),(1, 3)] - [(4, 0),(1, 5)]`
= `[(-3, 2),(0, 2)]`
(A – B)T = `[(-3, 0),(2, -2)]` ...(1)
AT = `[(1, 1),(2, 3)]`
BT = `[(4, 1),(0, 5)]`
AT – BT = `[(1, 1),(2, 3)] - [(4, 1),(0, 5)]`
= `[(-3, 0),(2, -2)]` ...(2)
From (1) and (2) we get
(A – B)T = AT – BT
APPEARS IN
संबंधित प्रश्न
In the matrix A = `[(8, 9, 4, 3),(- 1, sqrt(7), sqrt(3)/2, 5),(1, 4, 3, 0),(6, 8, -11, 1)]`, Write the elements a22, a23, a24, a34, a43, a44
If A = `[(0, 4, 9),(8, 3, 7)]`, B = `[(7, 3, 8),(1, 4, 9)]` find the value of B – 5A
Find the non-zero values of x satisfying the matrix equation
`x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]`
If A = `[(1, 2, 3),(3, 2, 1)]`, B = `[(1, 0),(2, -1),(0, 2)]` and C = `[(0, 1),(-2, 5)]` Which of the following statements are correct?
(i) AB + C = `[(5, 5),(5, 5)]`
(ii) BC = `[(0, 1),(2, -3),(-4, 10)]`
(iii) BA + C = `[(2, 5),(3, 0)]`
(iv) (AB)C = `[(-8, 20),(-8, 13)]`
Determine the matrices A and B if they satisfy 2A – B + `[(6, - 6, 0),(- 4, 2, 1)]` = 0 and A – 2B = `[(3, 2, 8),(-2, 1, -7)]`
If A = `[(1, "a"),(0, 1)]`, then compute A4
Consider the matrix Aα = `[(cos alpha, - sin alpha),(sin alpha, cos alpha)]` Show that `"A"_alpha "A"_beta = "A"_((alpha + beta))`
If A = `[(4, 2),(-1, x)]` and such that (A – 2I)(A – 3I) = 0, find the value of x
If the matrix 'A' is both symmetric and strew symmetric then.
Let A = [aij] be a square matrix of order 3 such that aij = 2j – i, for all i, j = 1, 2, 3. Then, the matrix A2 + A3 + ... + A10 is equal to ______.