Advertisements
Advertisements
प्रश्न
Consider the matrix Aα = `[(cos alpha, - sin alpha),(sin alpha, cos alpha)]` Show that `"A"_alpha "A"_beta = "A"_((alpha + beta))`
उत्तर
`"A"_alpha "A"_beta = [(cos alpha, - sin alpha),(sin alpha, cos alpha)] [(cos beta, - sin beta),(sin beta, cos beta)]`
= `[(cos alpha cos beta - sin alpha sin beta, - cos alpha sin beta - sin alpha cos beta),(sin alpha cos beta + cos alpha sin beta, - sin alpha sin beta + cos alpha cos beta)]`
= `[(cos alpha cos beta - sin alpha sin beta, -(sinalpha cos beta + cos alpha sin beta)),(sin alpha cos beta + cos alpha sin beta, cos alpha cos beta - sin alpha sin beta)]`
`"A"_alpha "A"_beta = [(cos(alpha + beta), - sin(alpha + beta)),(sin(alpha + beta) , cos(alpha + beta))]`
From equation (1), (2) and (3)
`"A"_alpha "A"_beta = "A"_((alpha + beta))`
APPEARS IN
संबंधित प्रश्न
If a matrix has 18 elements, what are the possible orders it can have? What if it has 6 elements?
Find the values of x, y and z from the following equation
`[(12, 3),(x, 3/2)] = [(y, z),(3, 5)]`
If A = `[(1, 9),(3, 4),(8, -3)]`, B = `[(5, 7),(3, 3),(1, 0)]` then verify that A + (– A) = (– A) + A = 0
If A = `[(0, 4, 9),(8, 3, 7)]`, B = `[(7, 3, 8),(1, 4, 9)]` find the value of 3A – 9B
Find x and y if `x[(4),(-3)] + y[(-2),(3)] = [(4),(6)]`
If A is of order p × q and B is of order q × r what is the order of AB and BA?
If A = `[(2, 5),(4, 3)]`, B = `[(1, -3),(2, 5)]` find AB, BA and verify AB = BA?
Let A = `[(1, 2),(1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, 2)]` Show that A(BC) = (AB)C
Verify that A2 = I when A = `[(5, -4),(6, -5)]`
If A = `[(5, 2, 9),(1, 2, 8)]`, B = `[(1, 7),(1, 2),(5, -1)]` verify that (AB)T = BT AT
If the number of columns and rows are not equal in a matrix then it is said to be a
If A = `[(4, 2),(-1, x)]` and such that (A – 2I)(A – 3I) = 0, find the value of x
Find the matrix A which satisfies the matrix relation `"A"= [(1, 2, 3),(4, 5, 6)] = [(-7, -8, -9),(2, 4, 6)]`
If AT = `[(4, 5),(-1, 0),(2, 3)]` and B = `[(2, -1, 1),(7, 5, -2)]`, veriy the following
(A – B)T = AT – BT
If AT = `[(4, 5),(-1, 0),(2, 3)]` and B = `[(2, -1, 1),(7, 5, -2)]`, veriy the following
(BT)T = B
Express the following matrices as the sum of a symmetric matrix and a skew-symmetric matrix:
`[(4, -2),(3, -5)]`
For what value of x, the matrix A = `[(0, 1, -2),(-1, 0, x^3),(2, -3, 0)]` is skew – symmetric
Choose the correct alternative:
What must be the matrix X, if `2"X" + [(1, 2),(3, 4)] = [(3, 8),(7, 2)]`?
Let det M denotes the determinant of the matrix M. Let A and B be 3 × 3 matrices with det A = 3 and det B = 4. Then the det (2AB) is