हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Express the following matrices as the sum of a symmetric matrix and a skew-symmetric matrix: [4-23-5] - Mathematics

Advertisements
Advertisements

प्रश्न

Express the following matrices as the sum of a symmetric matrix and a skew-symmetric matrix:

`[(4, -2),(3, -5)]`

योग

उत्तर

Let A = `[(4, -2),(3, -5)]`

AT = `[(4, 3),(-2, -5)]`

A + AT = `[(4, -2),(3, -5)] + [(4, 3),(-2, -5)]`

= `[(4 + 4, -2 + 3),(3 - 2, -5 - 5)]`

A + AT = `[(8, 1),(1, -10)]`

`1/2("A" + "A"^"T") = 1/2[(8, 1),(1, -10)]`

Let P = `1/2("A" + "A"^"T")`

= `1/2[(8, 1),(1, -10)]`

PT = `1/2[(8, 1),(1, -10)]^"T"`

= `1/2[(8, 1),(1, -10)]`

PT = P

∴ P is symmetric matrix.

A – AT = `[(4, -2),(3, -5)] - [(4, 3),(-2, -5)]`

= `[(4 - 4, -2 - 3),(3 + 2, -5 + 5)]`

A – AT = `[(0, -5),(5, 0)]`

`1/2("A" - "A"^"T") = 1/2[(0, -5),(5, 0)]`

Let Q = `1/2("A" - "A"^"T")`

= `1/2[(0, -5),(5, 0)]`

QT = `1/2[(0, -5),(5, 0)]^"T"`

= `1/2[(0, 5),(- 5, 0)]`

= `1/2 xx - 1[(0, 5),(- 5, 0)]`

QT = `- 1/2[(0, -5),(5, 0)]`

= – Q

∴ Q is a skew symmetric marix.

A =`1/2("A" + "A"^"T") + 1/2("A" - "A")^"T"`

Thus A is expressed as a sum of a symmetric and skew-symmetric matrix.

shaalaa.com
Matrices
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Matrices and Determinants - Exercise 7.1 [पृष्ठ १९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 7 Matrices and Determinants
Exercise 7.1 | Q 17. (i) | पृष्ठ १९

संबंधित प्रश्न

In the matrix A = `[(8, 9, 4, 3),(- 1, sqrt(7), sqrt(3)/2, 5),(1, 4, 3, 0),(6, 8, -11, 1)]`, Write the elements a22, a23, a24, a34, a43, a44


If A = `[(0, 4, 9),(8, 3, 7)]`, B = `[(7, 3, 8),(1, 4, 9)]` find the value of 3A – 9B


Find x and y if `x[(4),(-3)] + y[(-2),(3)] = [(4),(6)]`


Find the non-zero values of x satisfying the matrix equation

`x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]`


Given that A = `[(1, 3),(5, -1)]`, B = `[(1, -1, 2),(3, 5, 2)]`, C = `[(1, 3, 2),(-4, 1, 3)]` verify that A(B + C) = AB + AC


Let A = `[(1, 2),(1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, 2)]` Show that A(BC) = (AB)C


Let A = `[(1, 2),(1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, 2)]` Show that (A – B)C = AC – BC


Let A = `[(1, 2),(1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, 2)]` Show that (A – B)T = AT – BT


For the given matrix A = `[(1, 3, 5, 7),(2, 4, 6, 8),(9, 11, 13, 15)]` the order of the matrix AT is 


A = `[(3, 0),(4, 5)]`, B = `[(6, 3),(8, 5)]`, C = `[(3, 6),(1, 1)]` find the matrix D, such that CD – AB = 0


Determine the matrices A and B if they satisfy 2A – B + `[(6, - 6, 0),(- 4, 2, 1)]` = 0 and A – 2B = `[(3, 2, 8),(-2, 1, -7)]`


Consider the matrix Aα = `[(cos alpha, - sin alpha),(sin alpha, cos alpha)]` Find all possible real values of α satisfying the condition `"A"_alpha + "A"_alpha^"T"` = I


If A = `[(4, 2),(-1, x)]` and such that (A – 2I)(A – 3I) = 0, find the value of x


Give your own examples of matrices satisfying the following conditions:
A and B such that AB = 0 = BA, A ≠ 0 and B ≠ 0


If AT = `[(4, 5),(-1, 0),(2, 3)]` and B = `[(2, -1, 1),(7, 5, -2)]`, veriy the following 

(A + B)T = AT + BT = BT + AT


If A and B are symmetric matrices of same order, prove that AB – BA is a skew-symmetric matrix


Choose the correct alternative:
If A is a square matrix, then which of the following is not symmetric?


Choose the correct alternative:
If A and B are symmetric matrices of order n, where (A ≠ B), then


Choose the correct alternative:
If a ≠ b, b, c satisfy `|("a", 2"b", 2"c"),(3, "b", "c"),(4, "a", "b")|` = 0, then abc =


Choose the correct alternative:
Let A and B be two symmetric matrices of same order. Then which one of the following statement is not true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×