Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
If A is a square matrix, then which of the following is not symmetric?
विकल्प
A + AT
AAT
ATA
A – AT
उत्तर
AAT
APPEARS IN
संबंधित प्रश्न
In the matrix A = `[(8, 9, 4, 3),(- 1, sqrt(7), sqrt(3)/2, 5),(1, 4, 3, 0),(6, 8, -11, 1)]`, write The order of the matrix
If A = `[(1, 9),(3, 4),(8, -3)]`, B = `[(5, 7),(3, 3),(1, 0)]` then verify that A + (– A) = (– A) + A = 0
Find the values of x, y, z if `[(x), (y – z), (z + 3)] + [(y), (4), (3)] = [(4), (8), (16)]`
Find x and y if `x[(4),(-3)] + y[(-2),(3)] = [(4),(6)]`
A has ‘a’ rows and ‘a + 3’ columns. B has ‘b’ rows and ‘17 − b’ columns, and if both products AB and BA exist, find a, b?
If A = `[(costheta, theta),(0, costheta)]`, B = `[(sintheta, 0),(0, sintheta)]` then show that A2 + B2 = I
If A = `[(3, 1),(-1, 2)]` show that A2 – 5A + 7I2 = 0
If the number of columns and rows are not equal in a matrix then it is said to be a
Transpose of a column matrix is
If A = `[(1, 2, 3),(3, 2, 1)]`, B = `[(1, 0),(2, -1),(0, 2)]` and C = `[(0, 1),(-2, 5)]` Which of the following statements are correct?
(i) AB + C = `[(5, 5),(5, 5)]`
(ii) BC = `[(0, 1),(2, -3),(-4, 10)]`
(iii) BA + C = `[(2, 5),(3, 0)]`
(iv) (AB)C = `[(-8, 20),(-8, 13)]`
Given A = `[("p", 0),(0, 2)]`, B = `[(0, -"q"),(1, 0)]`, C = `[(2, -2),(2, 2)]` and if BA = C2, find p and q.
Find the values of p, q, r, and s if
`[("p"^2 - 1, 0, - 31 - "q"^3),(7, "r" + 1, 9),(- 2, 8, "s" - 1)] = [(1, 0, -4),(7, 3/2, 9),(-2, 8, -pi)]`
Let A and B be two symmetric matrices. Prove that AB = BA if and only if AB is a symmetric matrix
If A and B are symmetric matrices of same order, prove that AB – BA is a skew-symmetric matrix
Choose the correct alternative:
Which one of the following is not true about the matrix `[(1, 0, 0),(0, 0, 0),(0, 0, 5)]`?
Choose the correct alternative:
If A + I = `[(3, -2),(4, 1)]`, then (A + I)(A – I) is equal to
Let det M denotes the determinant of the matrix M. Let A and B be 3 × 3 matrices with det A = 3 and det B = 4. Then the det (2AB) is
Let A = `((1, -1, 0),(0, 1, -1),(0, 0, 1))` and B = 7A20 – 20A7 + 2I, where I is an identity matrix of order 3 × 3. If B = [bij], then b13 is equal to ______.