हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

For what value of x, the matrix A = [01-2-10x32-30] is skew – symmetric - Mathematics

Advertisements
Advertisements

प्रश्न

For what value of x, the matrix A = `[(0, 1, -2),(-1, 0, x^3),(2, -3, 0)]` is skew – symmetric

योग

उत्तर

A = `[(0, 1, -2),(-1, 0, x^3),(2, -3, 0)]`

AT = `[(0, -1, 2),(1, 0, -3),(-2, x^3, 0)]`

The matrix A is skew-symmetric if A = – AT

`[(0, 1, -2),(-1, 0, x^3),(2, -3, 0)] = - [(0, -1, 2),(1, 0, -3),(-2, x^3, 0)]`

`[(0, 1, -2),(-1, 0, x^3),(2, -3, 0)] + [(0, -1, 2),(1, 0, -3),(-2, x^3, 0)] = [(0, 0, 0),(0, 0, 0),(0, 0, 0)]`

`[(0 + 0, 1 - 1, -2 + 2),(-1 + 1, 0 + 0, x^3 - 3),(2 - 2, -3 x^3, 0 + 0)] = [(0, 0, 0),(0, 0, 0),(0, 0, 0)]`

`[(0, 0, 0),(0, 0, x^3 - 3),(0, x^3 - 3, 0)] = [(0, 0, 0),(0, 0, 0),(0, 0, 0)]`

Equating the corresponding entries

x3 – 3 = 0

x3 = 3

⇒ x = `3^(1/3)`

shaalaa.com
Matrices
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Matrices and Determinants - Exercise 7.1 [पृष्ठ १९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 7 Matrices and Determinants
Exercise 7.1 | Q 20. (i) | पृष्ठ १९

संबंधित प्रश्न

If A = `[(5, 2, 2),(-sqrt(17), 0.7, 5/2),(8, 3, 1)]` then verify (AT)T = A


Find the values of x, y and z from the following equation

`[(x + y + z),(x + z),(y + z)] = [(9),(5),(7)]`


If A = `[(1, 9),(3, 4),(8, -3)]`, B = `[(5, 7),(3, 3),(1, 0)]` then verify that A + B = B + A


Find the order of the product matrix AB if

  (i) (ii) (iii) (iv) (v)
Order of A 3 × 3 4 × 3 4 × 2 4 × 5 1 × 1
Order of B 3 × 3 3 × 2 2 × 2 5 × 1 1 × 3

Given that A = `[(1, 3),(5, -1)]`, B = `[(1, -1, 2),(3, 5, 2)]`, C = `[(1, 3, 2),(-4, 1, 3)]` verify that A(B + C) = AB + AC


Let A = `[(1, 2),(1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, 2)]` Show that A(BC) = (AB)C


If A = `[("a", "b"),("c", "d")]` and I = `[(1, 0),(0, 1)]` show that A2 – (a + d)A = (bc – ad)I2


If A = `[(5, 2, 9),(1, 2, 8)]`, B = `[(1, 7),(1, 2),(5, -1)]` verify that (AB)T = BT AT


If the number of columns and rows are not equal in a matrix then it is said to be a


Transpose of a column matrix is


If A = `[(1, "a"),(0, 1)]`, then compute A4 


Consider the matrix Aα = `[(cos alpha, - sin alpha),(sin alpha, cos alpha)]` Show that `"A"_alpha "A"_beta = "A"_((alpha + beta))`


Give your own examples of matrices satisfying the following conditions:
A and B such that AB ≠ BA


If `[(0, "p", 3),(2, "q"^2, -1),("r", 1, 0)]` is skew – symmetric find the values of p, q and r


Choose the correct alternative:
if A = `[(lambda, 1),(-1, -lambda)]`, then for what value of λ, A2 = 0 ?


Choose the correct alternative:
A root of the equation `|(3 - x, -6, 3),(-6, 3 - x, 3),(3, 3, -6 - x)|` = 0 is


Choose the correct alternative:
The matrix A satisfying the equation `[(1, 3),(0, 1)] "A" = [(1, 1),(0, -1)]` is


Let det M denotes the determinant of the matrix M. Let A and B be 3 × 3 matrices with det A = 3 and det B = 4. Then the det (2AB) is


Let A = `((1, -1, 0),(0, 1, -1),(0, 0, 1))` and B = 7A20 – 20A7 + 2I, where I is an identity matrix of order 3 × 3. If B = [bij], then b13 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×