Advertisements
Advertisements
प्रश्न
For what value of x, the matrix A = `[(0, 1, -2),(-1, 0, x^3),(2, -3, 0)]` is skew – symmetric
उत्तर
A = `[(0, 1, -2),(-1, 0, x^3),(2, -3, 0)]`
AT = `[(0, -1, 2),(1, 0, -3),(-2, x^3, 0)]`
The matrix A is skew-symmetric if A = – AT
`[(0, 1, -2),(-1, 0, x^3),(2, -3, 0)] = - [(0, -1, 2),(1, 0, -3),(-2, x^3, 0)]`
`[(0, 1, -2),(-1, 0, x^3),(2, -3, 0)] + [(0, -1, 2),(1, 0, -3),(-2, x^3, 0)] = [(0, 0, 0),(0, 0, 0),(0, 0, 0)]`
`[(0 + 0, 1 - 1, -2 + 2),(-1 + 1, 0 + 0, x^3 - 3),(2 - 2, -3 x^3, 0 + 0)] = [(0, 0, 0),(0, 0, 0),(0, 0, 0)]`
`[(0, 0, 0),(0, 0, x^3 - 3),(0, x^3 - 3, 0)] = [(0, 0, 0),(0, 0, 0),(0, 0, 0)]`
Equating the corresponding entries
x3 – 3 = 0
x3 = 3
⇒ x = `3^(1/3)`
APPEARS IN
संबंधित प्रश्न
If A = `[(5, 2, 2),(-sqrt(17), 0.7, 5/2),(8, 3, 1)]` then verify (AT)T = A
Find the values of x, y and z from the following equation
`[(x + y + z),(x + z),(y + z)] = [(9),(5),(7)]`
If A = `[(1, 9),(3, 4),(8, -3)]`, B = `[(5, 7),(3, 3),(1, 0)]` then verify that A + B = B + A
Find the order of the product matrix AB if
(i) | (ii) | (iii) | (iv) | (v) | |
Order of A | 3 × 3 | 4 × 3 | 4 × 2 | 4 × 5 | 1 × 1 |
Order of B | 3 × 3 | 3 × 2 | 2 × 2 | 5 × 1 | 1 × 3 |
Given that A = `[(1, 3),(5, -1)]`, B = `[(1, -1, 2),(3, 5, 2)]`, C = `[(1, 3, 2),(-4, 1, 3)]` verify that A(B + C) = AB + AC
Let A = `[(1, 2),(1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, 2)]` Show that A(BC) = (AB)C
If A = `[("a", "b"),("c", "d")]` and I = `[(1, 0),(0, 1)]` show that A2 – (a + d)A = (bc – ad)I2
If A = `[(5, 2, 9),(1, 2, 8)]`, B = `[(1, 7),(1, 2),(5, -1)]` verify that (AB)T = BT AT
If the number of columns and rows are not equal in a matrix then it is said to be a
Transpose of a column matrix is
If A = `[(1, "a"),(0, 1)]`, then compute A4
Consider the matrix Aα = `[(cos alpha, - sin alpha),(sin alpha, cos alpha)]` Show that `"A"_alpha "A"_beta = "A"_((alpha + beta))`
Give your own examples of matrices satisfying the following conditions:
A and B such that AB ≠ BA
If `[(0, "p", 3),(2, "q"^2, -1),("r", 1, 0)]` is skew – symmetric find the values of p, q and r
Choose the correct alternative:
if A = `[(lambda, 1),(-1, -lambda)]`, then for what value of λ, A2 = 0 ?
Choose the correct alternative:
A root of the equation `|(3 - x, -6, 3),(-6, 3 - x, 3),(3, 3, -6 - x)|` = 0 is
Choose the correct alternative:
The matrix A satisfying the equation `[(1, 3),(0, 1)] "A" = [(1, 1),(0, -1)]` is
Let det M denotes the determinant of the matrix M. Let A and B be 3 × 3 matrices with det A = 3 and det B = 4. Then the det (2AB) is
Let A = `((1, -1, 0),(0, 1, -1),(0, 0, 1))` and B = 7A20 – 20A7 + 2I, where I is an identity matrix of order 3 × 3. If B = [bij], then b13 is equal to ______.