Advertisements
Advertisements
प्रश्न
If A = `[(1, 2, 2),(2, 1, -2),(x, 2, y)]` is a matrix such that AAT = 9I, find the values of x and y
उत्तर
A = `[(1, 2, 2),(2, 1, -2),(x, 2, y)]`
AT = `[(1, 2, x),(2, 1, 2),(2, -2, y)]`
Given AAT = 9I
`[(1, 2, 2),(2, 1, -2),(x, 2, y)] [(1, 2, x),(2, 1, 2),(2, -2, y)] = 9[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
`[(1 + 4 + 4, 2 + 2 - 4, x + 4 + 2y),(2 + 2 - 4, 4 + 1 + 4, 2x + 2 - 2y),(x + 4 + 24, 2x + 2 - 2y, x^2 + 4 + y^2)] = [(9, 0, 0),(0, 9, 0),(0, 0, 9)]`
Equating the corresponding entries
x + 4 + 2y = 0 .......(1)
2x + 2 – 2y = o .......(2)
x + 4 + 2y = 0 .......(3)
2x + 2 – 2y = 0 .......(4)
x2 + 4 + y2 = 9 .......(5)
(1) ⇒ x + 2y + 4 = 0
(2) ⇒ x – y + 1 = 0
– ing 3y + 3 = 0
y = `(-3)/3`
= – 1
Substituting the value of y in equation (1) we have
x + 4 + 2x – 1 = 0
x + 4 – 2 = 0
⇒ x = – 2
Substituting x = – 2 and y = – 1 in equation (5) we have
(5) ⇒ (– 2)2 + 4 + (– 1)2 = 9
4 + 4 + 1 = 9
9 = 9
∴ The required values of x and y are
x = – 2 and y = – 1
APPEARS IN
संबंधित प्रश्न
In the matrix A = `[(8, 9, 4, 3),(- 1, sqrt(7), sqrt(3)/2, 5),(1, 4, 3, 0),(6, 8, -11, 1)]`, Write the elements a22, a23, a24, a34, a43, a44
Find the values of x, y and z from the following equation
`[(x + y + z),(x + z),(y + z)] = [(9),(5),(7)]`
If A = `[(4, 3, 1),(2, 3, -8),(1, 0, -4)]`, B = `[(2, 3, 4),(1, 9, 2),(-7, 1, -1)]` and C = `[(8, 3, 4),(1, -2, 3),(2, 4, -1)]` then verify that A + (B + C) = (A + B) + C
If A = `[(0, 4, 9),(8, 3, 7)]`, B = `[(7, 3, 8),(1, 4, 9)]` find the value of B – 5A
If A = `[(0, 4, 9),(8, 3, 7)]`, B = `[(7, 3, 8),(1, 4, 9)]` find the value of 3A – 9B
Find the values of x, y, z if `[(x - 3, 3x - z),(x + y + 7, x + y + z)] = [(1, 0),(1, 6)]`
Find the values of x, y, z if `[(x), (y – z), (z + 3)] + [(y), (4), (3)] = [(4), (8), (16)]`
Solve for x, y : `[(x^2),(y^2)] + 2[(-2x),(-y)] = [(5),(8)]`
Find the order of the product matrix AB if
(i) | (ii) | (iii) | (iv) | (v) | |
Order of A | 3 × 3 | 4 × 3 | 4 × 2 | 4 × 5 | 1 × 1 |
Order of B | 3 × 3 | 3 × 2 | 2 × 2 | 5 × 1 | 1 × 3 |
If A = `[(costheta, theta),(0, costheta)]`, B = `[(sintheta, 0),(0, sintheta)]` then show that A2 + B2 = I
Construct an m × n matrix A = [aij], where aij is given by
aij = `|3"i" - 4"j"|/4` with m = 3, n = 4
Consider the matrix Aα = `[(cos alpha, - sin alpha),(sin alpha, cos alpha)]` Show that `"A"_alpha "A"_beta = "A"_((alpha + beta))`
Consider the matrix Aα = `[(cos alpha, - sin alpha),(sin alpha, cos alpha)]` Find all possible real values of α satisfying the condition `"A"_alpha + "A"_alpha^"T"` = I
Let A and B be two symmetric matrices. Prove that AB = BA if and only if AB is a symmetric matrix
Choose the correct alternative:
If A and B are two matrices such that A + B and AB are both defined, then
Choose the correct alternative:
If the points (x, – 2), (5, 2), (8, 8) are collinear, then x is equal to
Choose the correct alternative:
If a ≠ b, b, c satisfy `|("a", 2"b", 2"c"),(3, "b", "c"),(4, "a", "b")|` = 0, then abc =
Choose the correct alternative:
If A + I = `[(3, -2),(4, 1)]`, then (A + I)(A – I) is equal to
Let (p1, q1, r1) and (p2, q2, r2) are satisfying `|(1, p, p^2),(1, q, q^2),(1, r, r^2)|` = 6 (where pi, qi ri ∈ N and pi < qi < ri and i = 1, 2) and point (p1, q1, r1) lies on the plane 2x + 3y + 6z = k, and point (p2, q2, r2) lies on the plane 2x + 3y + 6z = k2 (where p1 = p2 = 1) If distance between these planes is 'd', then value of (210d) is ______.
The number of matrices A = `[(a, b),(c, d)]`, where a, b, c, d ∈ {–1, 0, 1, 2, 3, ............, 10} such that A = A–1, is ______.