Advertisements
Advertisements
प्रश्न
Find the values of x, y, z if `[(x - 3, 3x - z),(x + y + 7, x + y + z)] = [(1, 0),(1, 6)]`
उत्तर
x – 3 = 1 ⇒ x = 1 + 3 ⇒ x = 4
3x – z = 0 ...(substitute the value of x)
3(4) – z = 0
12 – z = 0
∴ z = 12
x + y + z = 6
4 + y + 12 = 0
y + 16 = 6
y = 6 – 16
∴ y = – 10
The value of x = 4, y = – 10 and z = 12
APPEARS IN
संबंधित प्रश्न
If A = `[(5, 2, 2),(-sqrt(17), 0.7, 5/2),(8, 3, 1)]` then verify (AT)T = A
Find the values of x, y, z if `[(x), (y – z), (z + 3)] + [(y), (4), (3)] = [(4), (8), (16)]`
If A = `[(costheta, sintheta),(-sintheta, costheta)]` prove that AAT = I
Verify that A2 = I when A = `[(5, -4),(6, -5)]`
If the number of columns and rows are not equal in a matrix then it is said to be a
Which of the following can be calculated from the given matrices A = `[(1, 2),(3, 4),(5, 6)]`, B = `[(1, 2, 3),(4, 5, 6),(7, 8, 9)]`,
(i) A2
(ii) B2
(iii) AB
(iv) BA
Given A = `[("p", 0),(0, 2)]`, B = `[(0, -"q"),(1, 0)]`, C = `[(2, -2),(2, 2)]` and if BA = C2, find p and q.
Show that f(x) f(y) = f(x + y), where f(x) = `[(cosx, -sinx, 0),(sinx, cosx, 0),(0, 0, 1)]`
If A is a square matrix such that A2 = A, find the value of 7A – (I + A)3
Choose the correct alternative:
If A = `[(1, 2, 2),(2, 1, -2),("a", 2, "b")]` is a matrix satisfying the equation AAT = 9I, where I is 3 × 3 identity matrix, then the ordered pair (a, b) is equal to