Advertisements
Advertisements
प्रश्न
If A = `[(costheta, sintheta),(-sintheta, costheta)]` prove that AAT = I
उत्तर
AT = `[(costheta, - sintheta),(-sintheta, costheta)]`
A · AT = `[(costheta, sintheta),(- sintheta, costheta)] [(costheta, - sintheta),(sintheta, costheta)]`
= `[(cos^2theta + sin^2theta, -costhetasintheta + costhetasintheta),(-sintheta costheta + costheta sintheta, sin^2theta + cos^2theta)]`
= `[(1, 0),(0, 1)]`
= I
Hence it is proved.
APPEARS IN
संबंधित प्रश्न
In the matrix A = `[(8, 9, 4, 3),(- 1, sqrt(7), sqrt(3)/2, 5),(1, 4, 3, 0),(6, 8, -11, 1)]`, write The number of elements
Solve for x, y : `[(x^2),(y^2)] + 2[(-2x),(-y)] = [(5),(8)]`
A = `[(3, 0),(4, 5)]`, B = `[(6, 3),(8, 5)]`, C = `[(3, 6),(1, 1)]` find the matrix D, such that CD – AB = 0
Determine the matrices A and B if they satisfy 2A – B + `[(6, - 6, 0),(- 4, 2, 1)]` = 0 and A – 2B = `[(3, 2, 8),(-2, 1, -7)]`
Give your own examples of matrices satisfying the following conditions:
A and B such that AB ≠ BA
If AT = `[(4, 5),(-1, 0),(2, 3)]` and B = `[(2, -1, 1),(7, 5, -2)]`, veriy the following
(A – B)T = AT – BT
Express the following matrices as the sum of a symmetric matrix and a skew-symmetric matrix:
`[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`
Choose the correct alternative:
A root of the equation `|(3 - x, -6, 3),(-6, 3 - x, 3),(3, 3, -6 - x)|` = 0 is
Choose the correct alternative:
The matrix A satisfying the equation `[(1, 3),(0, 1)] "A" = [(1, 1),(0, -1)]` is
Choose the correct alternative:
Let A and B be two symmetric matrices of same order. Then which one of the following statement is not true?