Advertisements
Advertisements
Question
If A = `[(costheta, sintheta),(-sintheta, costheta)]` prove that AAT = I
Solution
AT = `[(costheta, - sintheta),(-sintheta, costheta)]`
A · AT = `[(costheta, sintheta),(- sintheta, costheta)] [(costheta, - sintheta),(sintheta, costheta)]`
= `[(cos^2theta + sin^2theta, -costhetasintheta + costhetasintheta),(-sintheta costheta + costheta sintheta, sin^2theta + cos^2theta)]`
= `[(1, 0),(0, 1)]`
= I
Hence it is proved.
APPEARS IN
RELATED QUESTIONS
Find the values of x, y and z from the following equation
`[(x + y + z),(x + z),(y + z)] = [(9),(5),(7)]`
Find the non-zero values of x satisfying the matrix equation
`x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]`
If A = `[(3, 1),(-1, 2)]` show that A2 – 5A + 7I2 = 0
Express the following matrices as the sum of a symmetric matrix and a skew-symmetric matrix:
`[(4, -2),(3, -5)]`
Find the matrix A such that `[(2, -1),(1, 0),(-3, 4)]"A"^"T" = [(-1, -8, -10),(1, 2, -5),(9, 22, 15)]`
Choose the correct alternative:
If A and B are two matrices such that A + B and AB are both defined, then
Choose the correct alternative:
if A = `[(lambda, 1),(-1, -lambda)]`, then for what value of λ, A2 = 0 ?
Let det M denotes the determinant of the matrix M. Let A and B be 3 × 3 matrices with det A = 3 and det B = 4. Then the det (2AB) is
If the matrix 'A' is both symmetric and strew symmetric then.
Let P = `[(3, -1, -2),(2, 0, alpha),(3, -5, 0)]`, where α ∈ R. Suppose Q = [qij] is a matrix satisfying PQ = kI3 for some non-zero k ∈ R. If q23 = `-k/8` and |Q| = `k^2/2`, then α2 + k2 is equal to ______.