Advertisements
Advertisements
Question
If A = `[(costheta, theta),(0, costheta)]`, B = `[(sintheta, 0),(0, sintheta)]` then show that A2 + B2 = I
Solution
L.H.S. = A2 + B2
A2 = `[(costheta, 0),(0, costheta)][(costheta, 0),(0, costheta)]`
= `[(cos^2theta, 0),(0, cos^2theta)]`
B2 = `[(sintheta, 0),(0, sintheta)] [(sintheta, 0),(0, sintheta)]`
= `[(sin^2theta, 0),(0, sin^2theta)]`
A2 + B2 = `[(cos^2theta, 0),(0, cos^2theta)] + [(sin^2theta, 0),(0, sin^2theta)]`
= `[(sin^2theta + cos^2theta, 0),(0, sin^2theta + cos^2theta)]`
= `[(1, 0),(0, 1)]`
= I
= R.H.S.
Hence proved.
APPEARS IN
RELATED QUESTIONS
If A = `[(5, 2, 2),(-sqrt(17), 0.7, 5/2),(8, 3, 1)]` then verify (AT)T = A
Find X and Y if X + Y = `[(7, 0),(3, 5)]` and X – Y = `[(3, 0),(0, 4)]`
Find x and y if `x[(4),(-3)] + y[(-2),(3)] = [(4),(6)]`
If A = `[(costheta, sintheta),(-sintheta, costheta)]` prove that AAT = I
If A is a 2 × 3 matrix and B is a 3 × 4 matrix, how many columns does AB have
If AT = `[(4, 5),(-1, 0),(2, 3)]` and B = `[(2, -1, 1),(7, 5, -2)]`, veriy the following
(BT)T = B
For what value of x, the matrix A = `[(0, 1, -2),(-1, 0, x^3),(2, -3, 0)]` is skew – symmetric
If A and B are symmetric matrices of same order, prove that AB – BA is a skew-symmetric matrix
Choose the correct alternative:
If A = `[(1, 2, 2),(2, 1, -2),("a", 2, "b")]` is a matrix satisfying the equation AAT = 9I, where I is 3 × 3 identity matrix, then the ordered pair (a, b) is equal to
If A = `[(1, 2),(2, 3)]` and A2 – kA – I2 = 0, then value of k is ______.