हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

If A is a square matrix such that A2 = A, find the value of 7A – (I + A)3 - Mathematics

Advertisements
Advertisements

प्रश्न

If A is a square matrix such that A2 = A, find the value of 7A – (I + A)3

योग

उत्तर

Given A2 = A

So 7A – (I + A)3 

= 7A – (I + 3A + 3A2 + A3)

= 7A – I – 3A – 3 A2 – A3

Given A2 = A

7A – I – 3A – 3A – A3

= – I + A – A3

= – I + A – (A2 × A)

= – I + A – (A × A)

= – I + A – A2

= – I + A – A = -I

So the value of 7A – (I + A)3 = – I.

shaalaa.com
Matrices
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Matrices and Determinants - Exercise 7.1 [पृष्ठ १८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 7 Matrices and Determinants
Exercise 7.1 | Q 12 | पृष्ठ १८

संबंधित प्रश्न

In the matrix A = `[(8, 9, 4, 3),(- 1, sqrt(7), sqrt(3)/2, 5),(1, 4, 3, 0),(6, 8, -11, 1)]`, Write the elements a22, a23, a24, a34, a43, a44


If A = `[(1, 9),(3, 4),(8, -3)]`, B = `[(5, 7),(3, 3),(1, 0)]` then verify that A + B = B + A


Find X and Y if X + Y = `[(7, 0),(3, 5)]` and X – Y = `[(3, 0),(0, 4)]`


If A = `[(2, 5),(4, 3)]`, B = `[(1, -3),(2, 5)]` find AB, BA and verify AB = BA?


Show that the matrices A = `[(1, 2),(3, 1)]`, B = `[(1, -2),(-3, 1)]` satisfy commutative property AB = BA


If A = `[(3, 1),(-1, 2)]` show that A2 – 5A + 7I2 = 0


Determine the value of x + y if `[(2x + y, 4x),(5x - 7, 4x)] = [(7, 7y - 13),(y, x + 6)]`


If `[(0, "p", 3),(2, "q"^2, -1),("r", 1, 0)]` is skew – symmetric find the values of p, q and r


Construct the matrix A = [aij]3×3, where aij = 1 – j. State whether A is symmetric or skew–symmetric


Choose the correct alternative:
If A and B are two matrices such that A + B and AB are both defined, then


Choose the correct alternative:
If A is a square matrix, then which of the following is not symmetric?


Choose the correct alternative:
If A and B are symmetric matrices of order n, where (A ≠ B), then


Choose the correct alternative:
If the square of the matrix `[(alpha, beta),(γ, - alpha)]` is the unit matrix of order 2, then α, β, and γ should


Choose the correct alternative:
A root of the equation `|(3 - x, -6, 3),(-6, 3 - x, 3),(3, 3, -6 - x)|` = 0 is


Choose the correct alternative:
If A is skew-symmetric of order n and C is a column matrix of order n × 1, then CT AC is


Choose the correct alternative:
If A + I = `[(3, -2),(4, 1)]`, then (A + I)(A – I) is equal to


If the matrix 'A' is both symmetric and strew symmetric then.


Let A = [aij] be a square matrix of order 3 such that aij = 2j – i, for all i, j = 1, 2, 3. Then, the matrix A2 + A3 + ... + A10 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×