Advertisements
Advertisements
प्रश्न
Show that the matrices A = `[(1, 2),(3, 1)]`, B = `[(1, -2),(-3, 1)]` satisfy commutative property AB = BA
उत्तर
A = `[(1, 2),(3, 1)]`, B = `[(1, -2),(-3, 1)]`
AB = `[(1, 2),(3,1)] xx [(1, -2),(-3, 1)]`
= `[(1 - 6, -2 + 2),(3 - 3, - 6 + 1)]`
= `[(-5, 0),(0, -5)]` ...(1)
BA = `[(1, -2),(-3, 1)] xx [(1, 2),(3, 1)]`
= `[(1 - 6, 2 - 2),(-3 + 3, -6 + 1)]`
= `[(-5, 0),(0, -5)]` ...(2)
From (1) and (2) we get
AB = BA.
It satisfy the commutative property.
APPEARS IN
संबंधित प्रश्न
If A = `[(1, 9),(3, 4),(8, -3)]`, B = `[(5, 7),(3, 3),(1, 0)]` then verify that A + (– A) = (– A) + A = 0
Find X and Y if X + Y = `[(7, 0),(3, 5)]` and X – Y = `[(3, 0),(0, 4)]`
Find the non-zero values of x satisfying the matrix equation
`x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]`
If A = `[(1, 0, 0),(0, 1, 0),("a", "b", - 1)]`, show that A2 is a unit matrix
Find the matrix A which satisfies the matrix relation `"A"= [(1, 2, 3),(4, 5, 6)] = [(-7, -8, -9),(2, 4, 6)]`
If `[(0, "p", 3),(2, "q"^2, -1),("r", 1, 0)]` is skew – symmetric find the values of p, q and r
If A and B are symmetric matrices of same order, prove that AB – BA is a skew-symmetric matrix
Choose the correct alternative:
If the square of the matrix `[(alpha, beta),(γ, - alpha)]` is the unit matrix of order 2, then α, β, and γ should
Choose the correct alternative:
If a ≠ b, b, c satisfy `|("a", 2"b", 2"c"),(3, "b", "c"),(4, "a", "b")|` = 0, then abc =
If the matrix 'A' is both symmetric and strew symmetric then.