Advertisements
Advertisements
प्रश्न
Show that the matrices A = `[(1, 2),(3, 1)]`, B = `[(1, -2),(-3, 1)]` satisfy commutative property AB = BA
उत्तर
A = `[(1, 2),(3, 1)]`, B = `[(1, -2),(-3, 1)]`
AB = `[(1, 2),(3,1)] xx [(1, -2),(-3, 1)]`
= `[(1 - 6, -2 + 2),(3 - 3, - 6 + 1)]`
= `[(-5, 0),(0, -5)]` ...(1)
BA = `[(1, -2),(-3, 1)] xx [(1, 2),(3, 1)]`
= `[(1 - 6, 2 - 2),(-3 + 3, -6 + 1)]`
= `[(-5, 0),(0, -5)]` ...(2)
From (1) and (2) we get
AB = BA.
It satisfy the commutative property.
APPEARS IN
संबंधित प्रश्न
If A = `[(3, 1),(-1, 2)]` show that A2 – 5A + 7I2 = 0
If A = `[(1, "a"),(0, 1)]`, then compute A4
Consider the matrix Aα = `[(cos alpha, - sin alpha),(sin alpha, cos alpha)]` Find all possible real values of α satisfying the condition `"A"_alpha + "A"_alpha^"T"` = I
If A = `[(1, 0, 0),(0, 1, 0),("a", "b", - 1)]`, show that A2 is a unit matrix
Give your own examples of matrices satisfying the following conditions:
A and B such that AB = 0 = BA, A ≠ 0 and B ≠ 0
Express the following matrices as the sum of a symmetric matrix and a skew-symmetric matrix:
`[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`
Find the matrix A such that `[(2, -1),(1, 0),(-3, 4)]"A"^"T" = [(-1, -8, -10),(1, 2, -5),(9, 22, 15)]`
Choose the correct alternative:
If A and B are symmetric matrices of order n, where (A ≠ B), then
A matrix is an ordered:-
If Aα = `[(cosα, sinα),(-sinα, cosα)]`, then which of following statement is TRUE?