Advertisements
Advertisements
प्रश्न
Given that A = `[(1, 3),(5, -1)]`, B = `[(1, -1, 2),(3, 5, 2)]`, C = `[(1, 3, 2),(-4, 1, 3)]` verify that A(B + C) = AB + AC
उत्तर
Given A = `[(1, 3),(5, -1)]`, B = `[(1, -1, 2),(3, 5, 2)]` C = `[(1, 3, 2),(-4, 1, 3)]`
B + C = `[(1, -1, 2),(3, 5, 2)] + [(1, 3, 2),(-4, 1, 3)]`
= `[(2, 2, 4),(-1, 6, 5)]`
A(B + C) = `[(1, 3),(5, -1)] xx [(2, 2, 4),(-1, 6, 5)]`
= `[(2 - 3, 2 + 18, 4 + 15),(10 + 1, 10 - 6, 20 - 5)]`
= `[(-1, 20, 19),(11, 4, 15)]` ...(1)
AB = `[(1, 3),(5, -1)] xx [(1, -1, 2),(3, 5, 2)]`
= `[(1 + 9, -1 + 15, 2 + 6),(5 - 3, -5 - 5, 10 - 2)]`
= `[(10, 14, 8),(2, -10, 8)]`
AC = `[(1, 3),(5, -1)] xx [(1, 3, 2),(-4, 1, 3)]`
= `[(1 - 12, 3 + 3, 2 + 9),(5 + 4, 15 - 1, 10 - 3)]`
= `[(-11, 6, 11),(9, 14, 7)]`
AB + AC = `[(10, 14, 8),(2, -10, 8)] + [(-11, 6, 11),(9, 14, 7)]`
= `[(-1, 20, 19),(11, 4, 15)]` ...(2)
From (1) and (2) we get
A(B + C) = AB + AC
APPEARS IN
संबंधित प्रश्न
Construct a 3 × 3 matrix whose elements are given by aij = |i – 2j|
Construct a 3 × 3 matrix whose elements are given by aij = `("i" + "j")^3/3`
Find the values of x, y, z if `[(x - 3, 3x - z),(x + y + 7, x + y + z)] = [(1, 0),(1, 6)]`
If A = `[(costheta, sintheta),(-sintheta, costheta)]` prove that AAT = I
Determine the value of x + y if `[(2x + y, 4x),(5x - 7, 4x)] = [(7, 7y - 13),(y, x + 6)]`
If A = `[(1, 0, 0),(0, 1, 0),("a", "b", - 1)]`, show that A2 is a unit matrix
If AT = `[(4, 5),(-1, 0),(2, 3)]` and B = `[(2, -1, 1),(7, 5, -2)]`, veriy the following
(BT)T = B
Choose the correct alternative:
If a ≠ b, b, c satisfy `|("a", 2"b", 2"c"),(3, "b", "c"),(4, "a", "b")|` = 0, then abc =
Choose the correct alternative:
The matrix A satisfying the equation `[(1, 3),(0, 1)] "A" = [(1, 1),(0, -1)]` is
If the matrix 'A' is both symmetric and strew symmetric then.