Advertisements
Advertisements
Question
Given that A = `[(1, 3),(5, -1)]`, B = `[(1, -1, 2),(3, 5, 2)]`, C = `[(1, 3, 2),(-4, 1, 3)]` verify that A(B + C) = AB + AC
Solution
Given A = `[(1, 3),(5, -1)]`, B = `[(1, -1, 2),(3, 5, 2)]` C = `[(1, 3, 2),(-4, 1, 3)]`
B + C = `[(1, -1, 2),(3, 5, 2)] + [(1, 3, 2),(-4, 1, 3)]`
= `[(2, 2, 4),(-1, 6, 5)]`
A(B + C) = `[(1, 3),(5, -1)] xx [(2, 2, 4),(-1, 6, 5)]`
= `[(2 - 3, 2 + 18, 4 + 15),(10 + 1, 10 - 6, 20 - 5)]`
= `[(-1, 20, 19),(11, 4, 15)]` ...(1)
AB = `[(1, 3),(5, -1)] xx [(1, -1, 2),(3, 5, 2)]`
= `[(1 + 9, -1 + 15, 2 + 6),(5 - 3, -5 - 5, 10 - 2)]`
= `[(10, 14, 8),(2, -10, 8)]`
AC = `[(1, 3),(5, -1)] xx [(1, 3, 2),(-4, 1, 3)]`
= `[(1 - 12, 3 + 3, 2 + 9),(5 + 4, 15 - 1, 10 - 3)]`
= `[(-11, 6, 11),(9, 14, 7)]`
AB + AC = `[(10, 14, 8),(2, -10, 8)] + [(-11, 6, 11),(9, 14, 7)]`
= `[(-1, 20, 19),(11, 4, 15)]` ...(2)
From (1) and (2) we get
A(B + C) = AB + AC
APPEARS IN
RELATED QUESTIONS
Find the order of the product matrix AB if
(i) | (ii) | (iii) | (iv) | (v) | |
Order of A | 3 × 3 | 4 × 3 | 4 × 2 | 4 × 5 | 1 × 1 |
Order of B | 3 × 3 | 3 × 2 | 2 × 2 | 5 × 1 | 1 × 3 |
Let A = `[(1, 2),(1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, 2)]` Show that A(BC) = (AB)C
Verify that A2 = I when A = `[(5, -4),(6, -5)]`
Show that f(x) f(y) = f(x + y), where f(x) = `[(cosx, -sinx, 0),(sinx, cosx, 0),(0, 0, 1)]`
Express the following matrices as the sum of a symmetric matrix and a skew-symmetric matrix:
`[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`
Choose the correct alternative:
if A = `[(lambda, 1),(-1, -lambda)]`, then for what value of λ, A2 = 0 ?
Choose the correct alternative:
If A is a square matrix, then which of the following is not symmetric?
Let det M denotes the determinant of the matrix M. Let A and B be 3 × 3 matrices with det A = 3 and det B = 4. Then the det (2AB) is
Let A = `[(cosα, -sinα),(sinα, cosα)]`, α ∈ R such that A32 = `[(0, -1),(1, 0)]`. Then a value of α is ______.
If Aα = `[(cosα, sinα),(-sinα, cosα)]`, then which of following statement is TRUE?