Advertisements
Advertisements
Question
Express the following matrices as the sum of a symmetric matrix and a skew-symmetric matrix:
`[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`
Solution
Let A = `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`
AT = `[(3, -2, -4),(3, -2, -5),(-1, 1, 2)]`
A + AT = `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)] + [(3, -2, -4),(3, -2, -5),(-1, 1, 2)]`
= `[(3 + 3, 3 - 2, -1 - 4),(-2 + 3, -2 - 2, 1 - 5),(-4 - 1, -5 + 1, 2 + 2)]`
A + AT = `[(6, 1, -5),(1, -4, -4),(-5, -4, 4)]`
`1/2("A" + "A"^"T") = 1/2[(6, 1, -5),(1, -4, -4),(-5, -4, 4)]`
Let P = `1/2("A" + "A"^"T")`
= `1/2[(6, 1, -5),(1, -4, -4),(-5, -4, 4)]`
PT = `1/2[(6, 1, -5),(1, -4, -4),(-5, -4, 4)]^"T"`
= `1/2[(6, 1, -5),(1, -4, -4),(-5, -4, 4)]`
= P
PT = P
∴ P = `1/2("A" + "A"^"T")` is a symmetric maatrix.
A – AT = `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)] - [(3, -2, -4),(3, -2, -5),(-1, 1, 2)]`
= `[(3 - 3, 3 + 2, -1 + 4),(-2 - 3, -2 + 2, 1 + 5),(-4 + 1, -5 - 1, 2 - 2)]`
A – AT = `[(0, 5, 3),(-5, 0, 6),(-3, -6, 0)]`
`1/2("A" - "A"^"T") = 1/2[(0, 5, 3),(-5, 0, 6),(-3, -6, 0)]`
Let Q = `1/2("A" - "A"^"T")`
= `1/2[(0, 5, 3),(-5, 0, 6),(-3, -6, 0)]`
QT = `1/2[(0, 5, 3),(-5, 0, 6),(-3, -6, 0)]^"T"`
`1/2[(0, -5, -3),(5, 0, -6),(3, 6, 0)]`
QT = `1/2 xx -1[(0, 5, 3),(-5, 0, 6),(-3, -6, 0)]`
QT = `1/2 [(0, 5, 3),(-5, 0, 6),(-3, -6, 0)]`
= – Q
∴ Q = `1/2("A" - "A"^"T")` is a skew symmetric matrix.
A = `1/2("A" + "A"^"T") + 1/2("A" - "A"^"T")`
Thus A is expressed as a sum of symmeric and a skew symmetric matrx
APPEARS IN
RELATED QUESTIONS
In the matrix A = `[(8, 9, 4, 3),(- 1, sqrt(7), sqrt(3)/2, 5),(1, 4, 3, 0),(6, 8, -11, 1)]`, write The order of the matrix
If A = `[(5, 4, 3),(1, -7, 9),(3, 8, 2)]` then find the transpose of A
Find the values of x, y and z from the following equation
`[(x + y, 2),(5 + z, xy)] = [(6, 2),(5, 8)]`
If A = `[(1, 9),(3, 4),(8, -3)]`, B = `[(5, 7),(3, 3),(1, 0)]` then verify that A + B = B + A
If A = `[(1, 9),(3, 4),(8, -3)]`, B = `[(5, 7),(3, 3),(1, 0)]` then verify that A + (– A) = (– A) + A = 0
If A = `[(0, 4, 9),(8, 3, 7)]`, B = `[(7, 3, 8),(1, 4, 9)]` find the value of 3A – 9B
Find the values of x, y, z if `[(x - 3, 3x - z),(x + y + 7, x + y + z)] = [(1, 0),(1, 6)]`
Given that A = `[(1, 3),(5, -1)]`, B = `[(1, -1, 2),(3, 5, 2)]`, C = `[(1, 3, 2),(-4, 1, 3)]` verify that A(B + C) = AB + AC
Show that the matrices A = `[(1, 2),(3, 1)]`, B = `[(1, -2),(-3, 1)]` satisfy commutative property AB = BA
If A is a 2 × 3 matrix and B is a 3 × 4 matrix, how many columns does AB have
Which of the following can be calculated from the given matrices A = `[(1, 2),(3, 4),(5, 6)]`, B = `[(1, 2, 3),(4, 5, 6),(7, 8, 9)]`,
(i) A2
(ii) B2
(iii) AB
(iv) BA
If A = `[(1, 2, 3),(3, 2, 1)]`, B = `[(1, 0),(2, -1),(0, 2)]` and C = `[(0, 1),(-2, 5)]` Which of the following statements are correct?
(i) AB + C = `[(5, 5),(5, 5)]`
(ii) BC = `[(0, 1),(2, -3),(-4, 10)]`
(iii) BA + C = `[(2, 5),(3, 0)]`
(iv) (AB)C = `[(-8, 20),(-8, 13)]`
If AT = `[(4, 5),(-1, 0),(2, 3)]` and B = `[(2, -1, 1),(7, 5, -2)]`, veriy the following
(A + B)T = AT + BT = BT + AT
Construct the matrix A = [aij]3×3, where aij = 1 – j. State whether A is symmetric or skew–symmetric
If A and B are symmetric matrices of same order, prove that AB – BA is a skew-symmetric matrix
Choose the correct alternative:
If A = `[(1, 2, 2),(2, 1, -2),("a", 2, "b")]` is a matrix satisfying the equation AAT = 9I, where I is 3 × 3 identity matrix, then the ordered pair (a, b) is equal to
Choose the correct alternative:
A root of the equation `|(3 - x, -6, 3),(-6, 3 - x, 3),(3, 3, -6 - x)|` = 0 is
If the matrix 'A' is both symmetric and strew symmetric then.
The number of matrices A = `[(a, b),(c, d)]`, where a, b, c, d ∈ {–1, 0, 1, 2, 3, ............, 10} such that A = A–1, is ______.