Advertisements
Advertisements
प्रश्न
Express the following matrices as the sum of a symmetric matrix and a skew-symmetric matrix:
`[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`
उत्तर
Let A = `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`
AT = `[(3, -2, -4),(3, -2, -5),(-1, 1, 2)]`
A + AT = `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)] + [(3, -2, -4),(3, -2, -5),(-1, 1, 2)]`
= `[(3 + 3, 3 - 2, -1 - 4),(-2 + 3, -2 - 2, 1 - 5),(-4 - 1, -5 + 1, 2 + 2)]`
A + AT = `[(6, 1, -5),(1, -4, -4),(-5, -4, 4)]`
`1/2("A" + "A"^"T") = 1/2[(6, 1, -5),(1, -4, -4),(-5, -4, 4)]`
Let P = `1/2("A" + "A"^"T")`
= `1/2[(6, 1, -5),(1, -4, -4),(-5, -4, 4)]`
PT = `1/2[(6, 1, -5),(1, -4, -4),(-5, -4, 4)]^"T"`
= `1/2[(6, 1, -5),(1, -4, -4),(-5, -4, 4)]`
= P
PT = P
∴ P = `1/2("A" + "A"^"T")` is a symmetric maatrix.
A – AT = `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)] - [(3, -2, -4),(3, -2, -5),(-1, 1, 2)]`
= `[(3 - 3, 3 + 2, -1 + 4),(-2 - 3, -2 + 2, 1 + 5),(-4 + 1, -5 - 1, 2 - 2)]`
A – AT = `[(0, 5, 3),(-5, 0, 6),(-3, -6, 0)]`
`1/2("A" - "A"^"T") = 1/2[(0, 5, 3),(-5, 0, 6),(-3, -6, 0)]`
Let Q = `1/2("A" - "A"^"T")`
= `1/2[(0, 5, 3),(-5, 0, 6),(-3, -6, 0)]`
QT = `1/2[(0, 5, 3),(-5, 0, 6),(-3, -6, 0)]^"T"`
`1/2[(0, -5, -3),(5, 0, -6),(3, 6, 0)]`
QT = `1/2 xx -1[(0, 5, 3),(-5, 0, 6),(-3, -6, 0)]`
QT = `1/2 [(0, 5, 3),(-5, 0, 6),(-3, -6, 0)]`
= – Q
∴ Q = `1/2("A" - "A"^"T")` is a skew symmetric matrix.
A = `1/2("A" + "A"^"T") + 1/2("A" - "A"^"T")`
Thus A is expressed as a sum of symmeric and a skew symmetric matrx
APPEARS IN
संबंधित प्रश्न
In the matrix A = `[(8, 9, 4, 3),(- 1, sqrt(7), sqrt(3)/2, 5),(1, 4, 3, 0),(6, 8, -11, 1)]`, Write the elements a22, a23, a24, a34, a43, a44
Construct a 3 × 3 matrix whose elements are given by aij = `("i" + "j")^3/3`
Find the values of x, y and z from the following equation
`[(x + y + z),(x + z),(y + z)] = [(9),(5),(7)]`
If A = `[(4, 3, 1),(2, 3, -8),(1, 0, -4)]`, B = `[(2, 3, 4),(1, 9, 2),(-7, 1, -1)]` and C = `[(8, 3, 4),(1, -2, 3),(2, 4, -1)]` then verify that A + (B + C) = (A + B) + C
If A = `[(0, 4, 9),(8, 3, 7)]`, B = `[(7, 3, 8),(1, 4, 9)]` find the value of B – 5A
Find the values of x, y, z if `[(x - 3, 3x - z),(x + y + 7, x + y + z)] = [(1, 0),(1, 6)]`
Solve for x, y : `[(x^2),(y^2)] + 2[(-2x),(-y)] = [(5),(8)]`
Let A = `[(1, 2),(1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, 2)]` Show that A(BC) = (AB)C
If A = `[(costheta, sintheta),(-sintheta, costheta)]` prove that AAT = I
Construct an m × n matrix A = [aij], where aij is given by
aij = `("i" - 2"j")^2/2` with m = 2, n = 3
Show that f(x) f(y) = f(x + y), where f(x) = `[(cosx, -sinx, 0),(sinx, cosx, 0),(0, 0, 1)]`
If AT = `[(4, 5),(-1, 0),(2, 3)]` and B = `[(2, -1, 1),(7, 5, -2)]`, veriy the following
(BT)T = B
If A is a 3 × 4 matrix and B is a matrix such that both ATB and BAT are defined, what is the order of the matrix B?
Find the matrix A such that `[(2, -1),(1, 0),(-3, 4)]"A"^"T" = [(-1, -8, -10),(1, 2, -5),(9, 22, 15)]`
If `[(0, "p", 3),(2, "q"^2, -1),("r", 1, 0)]` is skew – symmetric find the values of p, q and r
If A and B are symmetric matrices of same order, prove that AB – BA is a skew-symmetric matrix
Choose the correct alternative:
If A and B are symmetric matrices of order n, where (A ≠ B), then
Choose the correct alternative:
If A + I = `[(3, -2),(4, 1)]`, then (A + I)(A – I) is equal to