Advertisements
Advertisements
प्रश्न
Find the values of x, y and z from the following equation
`[(x + y + z),(x + z),(y + z)] = [(9),(5),(7)]`
उत्तर
x + y + z = 9 ...(1)
x + z = 5 ...(2)
y + z = 7 ...(3)
(1) ⇒ x + y + z = 9
(2) ⇒ x + 0 + z = 5
(–) (–) (–)
(1) – (2) ⇒ y = 4
Substitute the value of y = 4 in (3)
y + z = 7
4 + z = 7
z = 7 – 4
= 3
Substitute the value of z = 3 in (2)
x + 3 = 5
x = 5 – 3
= 2
∴ The value of x = 2, y = 4 and z = 3
APPEARS IN
संबंधित प्रश्न
If A = `[(4, 3, 1),(2, 3, -8),(1, 0, -4)]`, B = `[(2, 3, 4),(1, 9, 2),(-7, 1, -1)]` and C = `[(8, 3, 4),(1, -2, 3),(2, 4, -1)]` then verify that A + (B + C) = (A + B) + C
If A = `[(0, 4, 9),(8, 3, 7)]`, B = `[(7, 3, 8),(1, 4, 9)]` find the value of B – 5A
Find the non-zero values of x satisfying the matrix equation
`x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]`
Find the order of the product matrix AB if
(i) | (ii) | (iii) | (iv) | (v) | |
Order of A | 3 × 3 | 4 × 3 | 4 × 2 | 4 × 5 | 1 × 1 |
Order of B | 3 × 3 | 3 × 2 | 2 × 2 | 5 × 1 | 1 × 3 |
Given A = `[("p", 0),(0, 2)]`, B = `[(0, -"q"),(1, 0)]`, C = `[(2, -2),(2, 2)]` and if BA = C2, find p and q.
If A = `[(4, 2),(-1, x)]` and such that (A – 2I)(A – 3I) = 0, find the value of x
If A = `[(1, 0, 2), (0, 2, 1), (2, 0, 3)]` and A3 – 6A2 + 7A + kI = 0, find the value of k
Verify the property A(B + C) = AB + AC, when the matrices A, B, and C are given by A = `[(2, 0, -3),(1, 4, 5)]`, B = `[(3, 1),(-1, 0),(4, 2)]` and C = `[(4, 7),(2, 1),(1,-1)]`
If AT = `[(4, 5),(-1, 0),(2, 3)]` and B = `[(2, -1, 1),(7, 5, -2)]`, veriy the following
(A – B)T = AT – BT
Choose the correct alternative:
If A and B are two matrices such that A + B and AB are both defined, then