Advertisements
Advertisements
प्रश्न
If A = `[(4, 2),(-1, x)]` and such that (A – 2I)(A – 3I) = 0, find the value of x
उत्तर
A = `[(4, 2),(-1, x)]`
A – 2I = `[(4, 2),(-1, x)] - 2[(1, 0),(0, 1)]`
= `[(4, 2),(-1, x)] - [(2, 0),(0, 2)]`
= `[(4 - 2, 2 - 0),(-1 - 0, x - 2)]`
A – 2I = `[(2, 2),(-1, x - 2)]`
A – 3I = `[(4, 2),(-1, x)] - 3[(1, 0),(0, 1)]`
= `[(4, 2),(-1, x)] - 3[(3, 0),(0, 3)]`
= `[(4 - 3, 2 - 0),(-1 - 0, x - 3)]`
A – 3I = `[(1, 2),(-1, x - 3)]`
(A – 2I)(A – 3I) = `[(2, 2),(-1, x 2)] [(1, 2),(-1, x - 3)]`
= `[(2 -2, 4 + 2(x - 3)),(-1 - (x - 2), -2 + (x - 2)(x - 3))]`
= `[(0, 4 + 2x- 6),(-1 - x + 2, -2 + x^2 - 3x - 2x + 6)]`
(A – 2I)(A – 3I) = `[(0, 2x - 2), (-x + 1, x^2 - 5x + 4)]`
Given (A – 2I)(A – 3I) = 0
∴ `[(0, 2x - 2), (-x + 1, x^2 - 5x + 4)] = [(0, 0),(0, 0)]`
Equation the corresponding entries
2x – 2 = 0
⇒ x = 1
x2 – 5x + 4 = 0 ......(1)
Put x = 1 in equation (1)
12 – 5 × 1 + 4 = 5 – 5 = 0
∴ The reqired value of x is x = 1
APPEARS IN
संबंधित प्रश्न
Find the values of x, y and z from the following equation
`[(x + y, 2),(5 + z, xy)] = [(6, 2),(5, 8)]`
If A = `[(1, 9),(3, 4),(8, -3)]`, B = `[(5, 7),(3, 3),(1, 0)]` then verify that A + (– A) = (– A) + A = 0
Find x and y if `x[(4),(-3)] + y[(-2),(3)] = [(4),(6)]`
Solve for x, y : `[(x^2),(y^2)] + 2[(-2x),(-y)] = [(5),(8)]`
Show that the matrices A = `[(1, 2),(3, 1)]`, B = `[(1, -2),(-3, 1)]` satisfy commutative property AB = BA
Verify that A2 = I when A = `[(5, -4),(6, -5)]`
If A = `[("a", "b"),("c", "d")]` and I = `[(1, 0),(0, 1)]` show that A2 – (a + d)A = (bc – ad)I2
If A = `[(1, "a"),(0, 1)]`, then compute A4
Consider the matrix Aα = `[(cos alpha, - sin alpha),(sin alpha, cos alpha)]` Show that `"A"_alpha "A"_beta = "A"_((alpha + beta))`
Show that f(x) f(y) = f(x + y), where f(x) = `[(cosx, -sinx, 0),(sinx, cosx, 0),(0, 0, 1)]`
Verify the property A(B + C) = AB + AC, when the matrices A, B, and C are given by A = `[(2, 0, -3),(1, 4, 5)]`, B = `[(3, 1),(-1, 0),(4, 2)]` and C = `[(4, 7),(2, 1),(1,-1)]`
If `[(0, "p", 3),(2, "q"^2, -1),("r", 1, 0)]` is skew – symmetric find the values of p, q and r
Construct the matrix A = [aij]3×3, where aij = 1 – j. State whether A is symmetric or skew–symmetric
Choose the correct alternative:
If aij = (3i – 2j) and A = [aij]3 × 2 is
Choose the correct alternative:
If A is skew-symmetric of order n and C is a column matrix of order n × 1, then CT AC is
Choose the correct alternative:
The matrix A satisfying the equation `[(1, 3),(0, 1)] "A" = [(1, 1),(0, -1)]` is
A matrix is an ordered:-
Let M = `[(0, -α),(α, 0)]`, where α is a non-zero real number an N = `sum_(k = 1)^49`M2k. If (I – M2)N = –2I, then the positive integral value of α is ______.