मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

If A = [42-1x] and such that (A – 2I)(A – 3I) = 0, find the value of x - Mathematics

Advertisements
Advertisements

प्रश्न

If A = `[(4, 2),(-1, x)]` and such that (A – 2I)(A – 3I) = 0, find the value of x

बेरीज

उत्तर

A = `[(4, 2),(-1, x)]`

A – 2I = `[(4, 2),(-1, x)] - 2[(1, 0),(0, 1)]`

= `[(4, 2),(-1, x)] - [(2, 0),(0, 2)]`

= `[(4 - 2, 2 - 0),(-1 - 0, x - 2)]`

A – 2I = `[(2, 2),(-1, x - 2)]`

A – 3I = `[(4, 2),(-1, x)] - 3[(1, 0),(0, 1)]`

= `[(4, 2),(-1, x)] - 3[(3, 0),(0, 3)]`

= `[(4 - 3, 2 - 0),(-1 - 0, x - 3)]`

A – 3I = `[(1, 2),(-1, x - 3)]`

(A – 2I)(A – 3I) = `[(2, 2),(-1, x  2)] [(1, 2),(-1, x - 3)]`

= `[(2 -2, 4 + 2(x - 3)),(-1 - (x - 2), -2 + (x - 2)(x - 3))]`

= `[(0, 4 + 2x- 6),(-1 - x + 2, -2 + x^2 - 3x - 2x + 6)]`

(A – 2I)(A – 3I) = `[(0, 2x - 2), (-x + 1, x^2 - 5x + 4)]`

Given (A – 2I)(A – 3I) = 0

∴ `[(0, 2x - 2), (-x + 1, x^2 - 5x + 4)] = [(0, 0),(0, 0)]`

Equation the corresponding entries

2x – 2 = 0

⇒ x = 1

x2 – 5x + 4 = 0  ......(1)

Put x = 1 in equation (1)

12 – 5 × 1 + 4 = 5 – 5 = 0

∴ The  reqired value of x is x = 1

shaalaa.com
Matrices
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Matrices and Determinants - Exercise 7.1 [पृष्ठ १८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 7 Matrices and Determinants
Exercise 7.1 | Q 7 | पृष्ठ १८

संबंधित प्रश्‍न

Find the values of x, y and z from the following equation

`[(x + y, 2),(5 + z, xy)] = [(6, 2),(5, 8)]`


If A = `[(1, 9),(3, 4),(8, -3)]`, B = `[(5, 7),(3, 3),(1, 0)]` then verify that A + (– A) = (– A) + A = 0


Find x and y if `x[(4),(-3)] + y[(-2),(3)] = [(4),(6)]`


Solve for x, y : `[(x^2),(y^2)] + 2[(-2x),(-y)] = [(5),(8)]`


Show that the matrices A = `[(1, 2),(3, 1)]`, B = `[(1, -2),(-3, 1)]` satisfy commutative property AB = BA


Verify that A2 = I when A = `[(5, -4),(6, -5)]`


If A = `[("a", "b"),("c", "d")]` and I = `[(1, 0),(0, 1)]` show that A2 – (a + d)A = (bc – ad)I2


If A = `[(1, "a"),(0, 1)]`, then compute A4 


Consider the matrix Aα = `[(cos alpha, - sin alpha),(sin alpha, cos alpha)]` Show that `"A"_alpha "A"_beta = "A"_((alpha + beta))`


Show that f(x) f(y) = f(x + y), where f(x) = `[(cosx, -sinx, 0),(sinx, cosx, 0),(0, 0, 1)]`


Verify the property A(B + C) = AB + AC, when the matrices A, B, and C are given by A = `[(2, 0, -3),(1, 4, 5)]`, B = `[(3, 1),(-1, 0),(4, 2)]` and C = `[(4, 7),(2, 1),(1,-1)]`


If `[(0, "p", 3),(2, "q"^2, -1),("r", 1, 0)]` is skew – symmetric find the values of p, q and r


Construct the matrix A = [aij]3×3, where aij = 1 – j. State whether A is symmetric or skew–symmetric


Choose the correct alternative:
If aij =  (3i – 2j) and A = [aij]3 × 2 is


Choose the correct alternative:
If A is skew-symmetric of order n and C is a column matrix of order n × 1, then CT AC is


Choose the correct alternative:
The matrix A satisfying the equation `[(1, 3),(0, 1)] "A" = [(1, 1),(0, -1)]` is


A matrix is an ordered:-


Let M = `[(0, -α),(α, 0)]`, where α is a non-zero real number an N = `sum_(k = 1)^49`M2k. If (I – M2)N = –2I, then the positive integral value of α is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×