Advertisements
Advertisements
प्रश्न
If A = `[("a", "b"),("c", "d")]` and I = `[(1, 0),(0, 1)]` show that A2 – (a + d)A = (bc – ad)I2
उत्तर
A = `[("a", "b"),("c", "d")]`, I = `[(1, 0),(0, 1)]`
A2 = `[("a", "b"),("c", "d")] xx [("a", "b"),("c", "d")]`
= `[("a"^2 + "bc", "ab" + "bd"),("ac" + "dc", "bc" + "d"^2)]`
L.H.S. = A2 – (a + d)A
= `[("a"^2 + "bc", "ab" + "bd"),("ac" + "cd", "bc" + "d"^2)] - ("a" + "d")[("a", "b"),("c","d")]`
= `[("a"^2 + "bc", "ab" + "bd"),("ac" + "cd", "bc" + "d"^2)] - [("a"^2 + "ad", "ab" + "bd"),("ac" + "cd", "ad" + "d"^2)]`
= `[("bc" - "ad", 0),(0, "bc" - "ad")]`
= `("bc" - "ad") [(1, 0),(0, 1)]`
= (bc – ad)I
L.H.S. = R.H.S.
A2 – (a + d)A = (bc – ad)I2
APPEARS IN
संबंधित प्रश्न
In the matrix A = `[(8, 9, 4, 3),(- 1, sqrt(7), sqrt(3)/2, 5),(1, 4, 3, 0),(6, 8, -11, 1)]`, write The number of elements
If A = `[(4, 3, 1),(2, 3, -8),(1, 0, -4)]`, B = `[(2, 3, 4),(1, 9, 2),(-7, 1, -1)]` and C = `[(8, 3, 4),(1, -2, 3),(2, 4, -1)]` then verify that A + (B + C) = (A + B) + C
Find the values of x, y, z if `[(x), (y – z), (z + 3)] + [(y), (4), (3)] = [(4), (8), (16)]`
A has ‘a’ rows and ‘a + 3’ columns. B has ‘b’ rows and ‘17 − b’ columns, and if both products AB and BA exist, find a, b?
Show that the matrices A = `[(1, 2),(3, 1)]`, B = `[(1, -2),(-3, 1)]` satisfy commutative property AB = BA
Given A = `[("p", 0),(0, 2)]`, B = `[(0, -"q"),(1, 0)]`, C = `[(2, -2),(2, 2)]` and if BA = C2, find p and q.
If AT = `[(4, 5),(-1, 0),(2, 3)]` and B = `[(2, -1, 1),(7, 5, -2)]`, veriy the following
(A – B)T = AT – BT
Choose the correct alternative:
if A = `[(lambda, 1),(-1, -lambda)]`, then for what value of λ, A2 = 0 ?
Choose the correct alternative:
A root of the equation `|(3 - x, -6, 3),(-6, 3 - x, 3),(3, 3, -6 - x)|` = 0 is
A matrix is an ordered:-