Advertisements
Advertisements
Question
If A = `[("a", "b"),("c", "d")]` and I = `[(1, 0),(0, 1)]` show that A2 – (a + d)A = (bc – ad)I2
Solution
A = `[("a", "b"),("c", "d")]`, I = `[(1, 0),(0, 1)]`
A2 = `[("a", "b"),("c", "d")] xx [("a", "b"),("c", "d")]`
= `[("a"^2 + "bc", "ab" + "bd"),("ac" + "dc", "bc" + "d"^2)]`
L.H.S. = A2 – (a + d)A
= `[("a"^2 + "bc", "ab" + "bd"),("ac" + "cd", "bc" + "d"^2)] - ("a" + "d")[("a", "b"),("c","d")]`
= `[("a"^2 + "bc", "ab" + "bd"),("ac" + "cd", "bc" + "d"^2)] - [("a"^2 + "ad", "ab" + "bd"),("ac" + "cd", "ad" + "d"^2)]`
= `[("bc" - "ad", 0),(0, "bc" - "ad")]`
= `("bc" - "ad") [(1, 0),(0, 1)]`
= (bc – ad)I
L.H.S. = R.H.S.
A2 – (a + d)A = (bc – ad)I2
APPEARS IN
RELATED QUESTIONS
If A = `[(4, 3, 1),(2, 3, -8),(1, 0, -4)]`, B = `[(2, 3, 4),(1, 9, 2),(-7, 1, -1)]` and C = `[(8, 3, 4),(1, -2, 3),(2, 4, -1)]` then verify that A + (B + C) = (A + B) + C
If A = `[(1, 2, 3),(3, 2, 1)]`, B = `[(1, 0),(2, -1),(0, 2)]` and C = `[(0, 1),(-2, 5)]` Which of the following statements are correct?
(i) AB + C = `[(5, 5),(5, 5)]`
(ii) BC = `[(0, 1),(2, -3),(-4, 10)]`
(iii) BA + C = `[(2, 5),(3, 0)]`
(iv) (AB)C = `[(-8, 20),(-8, 13)]`
Find the values of p, q, r, and s if
`[("p"^2 - 1, 0, - 31 - "q"^3),(7, "r" + 1, 9),(- 2, 8, "s" - 1)] = [(1, 0, -4),(7, 3/2, 9),(-2, 8, -pi)]`
Find the matrix A such that `[(2, -1),(1, 0),(-3, 4)]"A"^"T" = [(-1, -8, -10),(1, 2, -5),(9, 22, 15)]`
If A and B are symmetric matrices of same order, prove that AB – BA is a skew-symmetric matrix
Choose the correct alternative:
If A is a square matrix, then which of the following is not symmetric?
Choose the correct alternative:
If the square of the matrix `[(alpha, beta),(γ, - alpha)]` is the unit matrix of order 2, then α, β, and γ should
Choose the correct alternative:
If a ≠ b, b, c satisfy `|("a", 2"b", 2"c"),(3, "b", "c"),(4, "a", "b")|` = 0, then abc =
Let det M denotes the determinant of the matrix M. Let A and B be 3 × 3 matrices with det A = 3 and det B = 4. Then the det (2AB) is
Let A = [aij] be a square matrix of order 3 such that aij = 2j – i, for all i, j = 1, 2, 3. Then, the matrix A2 + A3 + ... + A10 is equal to ______.