Advertisements
Advertisements
प्रश्न
If A = `[(2, 5),(4, 3)]`, B = `[(1, -3),(2, 5)]` find AB, BA and verify AB = BA?
उत्तर
Given A = `[(2, 5),(4, 3)]`, B = `[(1, -3),(2, 5)]`
AB = `[(2, 5),(4, 3)] xx [(1, -3),(2, 5)]`
= `[(2 + 10, -6 + 25),(4 + 6, -12 + 15)]`
= `[(12, 19),(10, 3)]`
BA = `[(1, -3),(2, 5)] xx [(2, 5),(4, 3)]`
= `[(2 - 12, 5 - 9),(4 + 20, 10 + 15)]`
= `[(-10, -4),(24, 25)]`
AB ≠ BA
APPEARS IN
संबंधित प्रश्न
If A = `[(4, 3, 1),(2, 3, -8),(1, 0, -4)]`, B = `[(2, 3, 4),(1, 9, 2),(-7, 1, -1)]` and C = `[(8, 3, 4),(1, -2, 3),(2, 4, -1)]` then verify that A + (B + C) = (A + B) + C
Find X and Y if X + Y = `[(7, 0),(3, 5)]` and X – Y = `[(3, 0),(0, 4)]`
If A = `[(costheta, sintheta),(-sintheta, costheta)]` prove that AAT = I
If A = `[("a", "b"),("c", "d")]` and I = `[(1, 0),(0, 1)]` show that A2 – (a + d)A = (bc – ad)I2
Consider the matrix Aα = `[(cos alpha, - sin alpha),(sin alpha, cos alpha)]` Find all possible real values of α satisfying the condition `"A"_alpha + "A"_alpha^"T"` = I
If A = `[(1, 0, 2), (0, 2, 1), (2, 0, 3)]` and A3 – 6A2 + 7A + kI = 0, find the value of k
Choose the correct alternative:
If A is a square matrix, then which of the following is not symmetric?
Choose the correct alternative:
If the square of the matrix `[(alpha, beta),(γ, - alpha)]` is the unit matrix of order 2, then α, β, and γ should
Choose the correct alternative:
Let A and B be two symmetric matrices of same order. Then which one of the following statement is not true?
If the matrix 'A' is both symmetric and strew symmetric then.