Advertisements
Advertisements
प्रश्न
Show that f(x) f(y) = f(x + y), where f(x) = `[(cosx, -sinx, 0),(sinx, cosx, 0),(0, 0, 1)]`
उत्तर
f(x) = `[(cosx, -sinx, 0),(sinx, cosx, 0),(0, 0, 1)]`
f(y) = `[(cosy, -siny, 0),(siny, cosy, 0),(0, 0, 1)]`
f(x + y) = `[(cos(x + y), -sin(x + y), 0),(sin(x + y), cos(x+ y), 0),(0, 0, 1)]`
f(x) f(y) = `[(cosx, -sinx, 0),(sinx, cosx, 0),(0, 0, 1)] [(cosy, -siny, 0),(siny, cosy, 0),(0, 0, 1)]`
= `[(cosx cosy - sinx siny + 0, -cosx siny - sinx cosy + 0, 0 + 0 + 0),(sinx cosy + cosx siny + 0, -sinx siny + cosx cosy + 0, 0 + 0 + 0),(0 + 0 + 0, 0 + 0 + 0, 0 + 0 + 1)]`
= `[(cosx cosy - sinx siny, -(sinx cosy + cosx siny), 0),(sinx cosy + siny, (cosx cosy - sinx siny), 0),(0, 0, 1)]`
f(x) f(y) = `[(cos(x + y), -sin(x + y), 0),(sin(x + y), cos(x + y), 0),(0, 0, 1)]`
f(x) f(y) = f(x + y)
APPEARS IN
संबंधित प्रश्न
In the matrix A = `[(8, 9, 4, 3),(- 1, sqrt(7), sqrt(3)/2, 5),(1, 4, 3, 0),(6, 8, -11, 1)]`, write The order of the matrix
If A = `[(5, 4, 3),(1, -7, 9),(3, 8, 2)]` then find the transpose of A
If A = `[(5, 2, 2),(-sqrt(17), 0.7, 5/2),(8, 3, 1)]` then verify (AT)T = A
If A = `[(costheta, theta),(0, costheta)]`, B = `[(sintheta, 0),(0, sintheta)]` then show that A2 + B2 = I
If the number of columns and rows are not equal in a matrix then it is said to be a
Transpose of a column matrix is
If `cos theta [(cos theta, sin theta),(-sin theta, cos theta)] + sin theta[(x, -cos theta),(cos theta, x)]` = I2, find x.
Find the values of p, q, r, and s if
`[("p"^2 - 1, 0, - 31 - "q"^3),(7, "r" + 1, 9),(- 2, 8, "s" - 1)] = [(1, 0, -4),(7, 3/2, 9),(-2, 8, -pi)]`
Determine the matrices A and B if they satisfy 2A – B + `[(6, - 6, 0),(- 4, 2, 1)]` = 0 and A – 2B = `[(3, 2, 8),(-2, 1, -7)]`
If A = `[(1, "a"),(0, 1)]`, then compute A4
Give your own examples of matrices satisfying the following conditions:
A and B such that AB ≠ BA
If A is a square matrix such that A2 = A, find the value of 7A – (I + A)3
Verify the property A(B + C) = AB + AC, when the matrices A, B, and C are given by A = `[(2, 0, -3),(1, 4, 5)]`, B = `[(3, 1),(-1, 0),(4, 2)]` and C = `[(4, 7),(2, 1),(1,-1)]`
If AT = `[(4, 5),(-1, 0),(2, 3)]` and B = `[(2, -1, 1),(7, 5, -2)]`, veriy the following
(A – B)T = AT – BT
Express the following matrices as the sum of a symmetric matrix and a skew-symmetric matrix:
`[(4, -2),(3, -5)]`
For what value of x, the matrix A = `[(0, 1, -2),(-1, 0, x^3),(2, -3, 0)]` is skew – symmetric
Choose the correct alternative:
If aij = (3i – 2j) and A = [aij]3 × 2 is
Choose the correct alternative:
The matrix A satisfying the equation `[(1, 3),(0, 1)] "A" = [(1, 1),(0, -1)]` is