Advertisements
Advertisements
प्रश्न
A shopkeeper purchases a certain number of books for Rs. 960. If the cost per book was Rs. 8 less, the number of books that could be purchased for Rs. 960 would be 4 more. Write an equation, taking the original cost of each book to be Rs. x, and Solve it to find the original cost of the books.
उत्तर
Original cost of each book
= ₹ x
∴ Number of books for ₹960 = `(960)/x`
Now, if cost of each book = ₹(x - 8)
Number of books for ₹960 = `(960)/(x - 8)`
According to the question
`(960)/x + 4 = (960)/(x - 8)`
or
`(960)/((x - 8)) - (960)/x = 4`
`(960x - 960x + 7,680)/(x (x - 8)) = 4`
or
7,680 = 4x2 - 32x
or
x2 - 8x - 1,920 = 0
x2 + 40x - 48x - 1,920 = 0
x (x + 40) - 48 (x + 40) = 0
(x + 40) (x - 48) = 0
⇒ x = -40, 48
as cost can't be - ve x = 48.
APPEARS IN
संबंधित प्रश्न
Find the roots of the following quadratic equation by factorisation:
100x2 – 20x + 1 = 0
Solve for x
`(x - 1)/(2x + 1) + (2x + 1)/(x - 1) = 2, "where x" != -1/2, 1`
In a class test, the sum of the marks obtained by P in Mathematics and science is 28. Had he got 3 marks more in mathematics and 4 marks less in Science. The product of his marks would have been 180. Find his marks in two subjects.
`x^2-6x+3=0`
If ax2 + bx + c = 0 has equal roots, then c =
Solve the following equation: `10"x" - 1/"x" = 3`
A two digit number is such that the product of the digits is 14. When 45 is added to the number, then the digit are reversed. Find the number.
Solve equation using factorisation method:
x(x – 5) = 24
There are three consecutive positive integers such that the sum of the square of the first and the product of other two is 154. What are the integers?
In the centre of a rectangular lawn of dimensions 50 m × 40 m, a rectangular pond has to be constructed so that the area of the grass surrounding the pond would be 1184 m2 [see figure]. Find the length and breadth of the pond.