हिंदी

A Sphere, a Cylinder and a Cone Have the Same Diameter. the Height of the Cylinder and Also the Cone Are Equal to the Diameter of the Sphere. Find the Ratio of Their Volumes. - Mathematics

Advertisements
Advertisements

प्रश्न

A sphere, a cylinder and a cone have the same diameter. The height of the cylinder and also the cone are equal to the diameter of the sphere. Find the ratio of their volumes.

उत्तर

Let r be the common radius thus,
h = height of the cone = height of the cylinder = 2r
Let

`V_1= Volume   of   sphere = 4/3 πr^3`

`V_2= "Volume  of cylinder" = π r^2 xx2r =2πr^3`

`V
_3= Volume of the cone =1/3π r^2 xx 2r=2/3πr^3`

Now ,

`V_1:V_2:V_3= 4/3πr^3 : 2π r^3`

=4:6:2

=2:3:1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Surface Areas and Volume of a Sphere - Exercise 21.2 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 21 Surface Areas and Volume of a Sphere
Exercise 21.2 | Q 32 | पृष्ठ २२

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×