Advertisements
Advertisements
प्रश्न
A two digit number is 4 times the sum of its digits and twice the product of its digits. Find the number.
उत्तर
Let the require digit be = (10x + y)
Then according to question
(10x + y) = 4(x + y)
(10x + y) = 4x + 4y
10x + y - 4x - 4y = 0
6x - 3y = 0
2x - y = 0
2x = y ................(1)
And, (10x + y) = 2xy .........(2)
Now putting the value of y in equation (2) from (1)
(10x + 2x) = (2x)(2x)
4x2 - 12x = 0
4x(x - 3) = 0
x(x - 3) = 0
So, either
x = 0
Or
x - 3 = 0
x = 3
So, the digit can never be negative.
When x = 3 then
y = 2x = 2 x 3 = 6
Therefore, number
=10x + y
= 10(3) + 6
= 30 + 6
= 36
Thus, the required number be 36.
APPEARS IN
संबंधित प्रश्न
Solve for x
:`1/((x-1)(x-2))+1/((x-2)(x-3))=2/3` , x ≠ 1,2,3
Find the roots of the following quadratic equation by factorisation:
2x2 + x – 6 = 0
A two digits number is such that the product of the digits is 12. When 36 is added to the number, the digits inter change their places determine the number.
For the equation given below, find the value of ‘m’ so that the equation has equal roots. Also, find the solution of the equation:
(m – 3)x2 – 4x + 1 = 0
Without solving the following quadratic equation Find the value of p for which the roots are equal
`px^2 - 4x + 3 = 0`
Find the values of k for which the quadratic equation
\[\left( 3k + 1 \right) x^2 + 2\left( k + 1 \right)x + 1 = 0\] has equal roots. Also, find the roots.
Solve the following quadratic equation using formula method only
x2 - 6x + 4 = 0
The speed of an express train is x km/hr arid the speed of an ordinary train is 12 km/hr less than that of the express train. If the ordinary train takes one hour longer than the express train to cover a distance of 240 km, find the speed of the express train.
Two pipes running together can 1 fill a cistern in 11 1/9 minutes. If one pipe takes 5 minutes more than the other to fill the cistern find the time when each pipe would fill the cistern.
In each of the following determine whether the given values are solutions of the equation or not.
x2 + `sqrt(2)` - 4 = 0; x = `sqrt(2)`, x = -2`sqrt(2)`