हिंदी

A Two Digit Number is 4 Times the Sum of Its Digits and Twice the Product of Its Digits. Find the Number. - Mathematics

Advertisements
Advertisements

प्रश्न

A two digit number is 4 times the sum of its digits and twice the product of its digits. Find the number.

उत्तर

Let the require digit be = (10x + y)

Then according to question

(10x + y) = 4(x + y)

(10x + y) = 4x + 4y

10x + y - 4x - 4y = 0

6x - 3y = 0

2x - y = 0

2x = y                          ................(1)

And, (10x + y) = 2xy                    .........(2)

Now putting the value of y in equation (2) from (1)

(10x + 2x) = (2x)(2x)

4x2 - 12x = 0

4x(x - 3) = 0

x(x - 3) = 0

So, either

x = 0

Or

x - 3 = 0

x = 3

So, the digit can never be negative.

When x = 3 then

y = 2x = 2 x 3 = 6

Therefore, number

=10x + y

= 10(3) + 6

= 30 + 6

= 36

Thus, the required number be 36.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Quadratic Equations - Exercise 4.7 [पृष्ठ ५२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 4 Quadratic Equations
Exercise 4.7 | Q 27 | पृष्ठ ५२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×