हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Uniform Tube Closed at One End, Contains a Pellet of Mercury 10 Cm Long. When the Tube is Kept Vertically with the Closed-end Upward, the Length of the Air Column Trapped is 20 Cm. - Physics

Advertisements
Advertisements

प्रश्न

A uniform tube closed at one end, contains a pellet of mercury 10 cm long. When the tube is kept vertically with the closed-end upward, the length of the air column trapped is 20 cm. Find the length of the air column trapped when the tube is inverted so that the closed-end goes down. Atmospheric pressure = 75 cm of mercury.

योग

उत्तर

Let the CSA of the tube be A . 

Initial volume of air , V1 = 20A cm = 0.2A

Length of mercury , h = 0.1 m

Let the pressure of the trapped air when the tube is inverted and vertical be P1.

Now , Pressure of the mercury and trapped air balances the atmospheric pressure . Thus , 

P1 + `0.1rho g` = `0.75rho g`

⇒ P1 = `0.65rho g`

when the tube is inverted with the closed end down , the pressure acting upon the trapped air is 

Atmospheric pressure + Mercury column pressure 

Now , 

Pressure of trapped air = Atmospheric Pressure + Mercury column Pressure        [In equilibrium]

P2 = `0.75 rho g` + `0.1rho g` = `0.85 rho g`

Applying the Boyle's law when the temperature remains constant , we get

P1 V1 = P2V

Let the new height of the trapped air be x .

⇒ `0.65 rho g`0.2A = `0.85rho g`xA

⇒ x = 0.15 m = 15 cm 

shaalaa.com
Molecular Nature of Matter
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Kinetic Theory of Gases - Exercises [पृष्ठ ३५]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 2 Kinetic Theory of Gases
Exercises | Q 33 | पृष्ठ ३५

संबंधित प्रश्न

Estimate the fraction of molecular volume to the actual volume occupied by oxygen gas at STP. Take the diameter of an oxygen molecule to be 3Å.


An air bubble of volume 1.0 cm3 rises from the bottom of a lake 40 m deep at a temperature of 12 °C. To what volume does it grow when it reaches the surface, which is at a temperature of 35 °C?


Consider a collision between an oxygen molecule and a hydrogen molecule in a mixture of oxygen and hydrogen kept at room temperature. Which of the following are possible?
(a) The kinetic energies of both the molecules increase.
(b) The kinetic energies of both the molecules decrease.
(c) kinetic energy of the oxygen molecule increases and that of the hydrogen molecule decreases.
(d) The kinetic energy of the hydrogen molecule increases and that of the oxygen molecule decreases.


Consider a mixture of oxygen and hydrogen kept at room temperature. As compared to a hydrogen molecule an oxygen molecule hits the wall


Calculate the mass of 1 cm3 of oxygen kept at STP.


Find the ratio of the mean speed of hydrogen molecules to the mean speed of nitrogen molecules in a sample containing a mixture of the two gases.

Use R = 8.314 JK-1 mol-1


Figure shows a vessel partitioned by a fixed diathermic separator. Different ideal gases are filled in the two parts. The rms speed of the molecules in the left part equals the mean speed of the molecules in the right part. Calculate the ratio of the mass of a molecule in the left part to the mass of a molecule in the right part.


Estimate the number of collisions per second suffered by a molecule in a sample of hydrogen at STP. The mean free path (average distance covered by a molecule between successive collisions) = 1.38 × 105 cm.

Use R = 8.31 JK−1 mol−1


Hydrogen gas is contained in a closed vessel at 1 atm (100 kPa) and 300 K. (a) Calculate the mean speed of the molecules. (b) Suppose the molecules strike the wall with this speed making an average angle of 45° with it. How many molecules strike each square metre of the wall per second?

Use R = 8.31 JK-1 mol-1


A vertical cylinder of height 100 cm contains air at a constant temperature. The top is closed by a frictionless light piston. The atmospheric pressure is equal to 75 cm of mercury. Mercury is slowly poured over the piston. Find the maximum height of the mercury column that can be put on the piston.


Work done by a sample of an ideal gas in a process A is double the work done in another process B. The temperature rises through the same amount in the two processes. If CAand CB be the molar heat capacities for the two processes,


For a solid with a small expansion coefficient,


  The value of Cp − Cv is 1.00 R for a gas sample in state A and 1.08 R in state B. Let pAand pB denote the pressures and TA and TB denote the temperatures of the states A and B, respectively. It is most likely that


The figure shows a process on a gas in which pressure and volume both change. The molar heat capacity for this process is C.


The molar heat capacity for the process shown in the figure is


The molar heat capacity of oxygen gas at STP is nearly 2.5 R. As the temperature is increased, it gradually increases and approaches 3.5 R. The most appropriate reason for this behaviour is that at high temperatures


One mole of gas expands obeying the relation as shown in the P-V diagram. The maximum temperature in this process is equal to ______.

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×