Advertisements
Advertisements
प्रश्न
एका वर्गसमीकरणाच्या दोन मुळांची बेरीज 5 आणि त्यांच्या घनांची बेरीज 35 आहे, तर ते वर्गसमीकरण कोणते?
उत्तर
समजा, α आणि β ही वर्गसमीकरणाची मुळे आहेत.
दिलेल्या अटीनुसार,
α + β = 5 आणि α3 + β3 = 35
आता, (α + β)3 = α3 + 3α2β + 3αβ2 + β3
∴ (α + β)3 = α3 + β3 + 3αβ (α + β)
∴ (5)3 = 35 + 3αβ(5)
∴ 125 = 35 + 15αβ
∴ 125 - 35 = 15αβ
∴ 15αβ = 90
∴ αβ = `90/15`
∴ αβ = 6
∴ वर्गसमीकरण,
x2 - (α + β)x + αβ = 0
∴ x2 - 5x + 6 = 0
संबंधित प्रश्न
खालील रिकाम्या चौकटी भरा.
मुळांची बेरीज | → | वर्गसमीकरण | ← | मुळांचा गुणाकार = 5 |
________ |
खालील वर्गसमीकरणासाठी विवेचकाची किंमत काढा.
x2 + 7x - 1 = 0
खालील वर्गसमीकरणासाठी विवेचकाची किंमत काढा.
2y2 - 5x + 10 = 0
खाली दिलेल्या वर्गसमीकरणाच्या मुळाचे स्वरूप ठरवा.
3x2 - 5x + 7 = 0
खाली दिलेल्या वर्गसमीकरणाच्या मुळाचे स्वरूप ठरवा.
`sqrt3x^2 + sqrt2x - 2sqrt3 = 0`
खाली दिलेल्या वर्गसमीकरणाच्या मुळाचे स्वरूप ठरवा.
m2 - 2m + 1 = 0
(m − 12)x2 + 2(m − 12) x + 2 = 0 या वर्गसमीकरणाची मुळे वास्तव व समान असतील, तर m ची किंमत काढा.
असे वर्गसमीकरण तयार करा, की ज्याची मुळे 2x2 + 2(p + q) x + p2 + q2 = 0 या समीकरणाच्या मुळांच्या बेरजेचा वर्ग व वजाबाकीचा वर्ग असतील.
खालील वर्गसमीकरणाची मुळे वास्तव व समान असतील, तर m ची किंमत काढा.
(m – 12) x2 + 2 (m – 12) x + 2 = 0
वर्गसमीकरणाच्या मुळांचे स्वरूप ठरवण्यासाठी खालील कृती पूर्ण करा:
x2 + 2x - 9 = 0
उकल:
x2 + 2x - 9 = 0 ची तुलना ax2 + bx + c = 0 शी करून,
a = 1, b = 2, c = `square`
∴ b2 - 4ac = (2)2 - 4 × `square` × `square`
∴ Δ = 4 + `square` = 40
∴ b2 - 4ac > 0
∴ वर्गसमीकरणाची मुळे वास्तव व असमान आहेत.