हिंदी
महाराष्ट्र स्टेट बोर्डएसएससी (मराठी माध्यम) १० वीं कक्षा

आकृती मध्ये, केंद्र P आणि Q असलेली वर्तुळे परस्परांना बिंदू R मध्ये स्पर्श करतात. बिंदू R मधून जाणारी रेषा त्या वर्तुळांना अनुक्रमे बिंदू A व बिंदू B मध्ये छेदते. - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

प्रश्न

आकृती मध्ये, केंद्र P आणि Q असलेली वर्तुळे परस्परांना बिंदू R मध्ये स्पर्श करतात. बिंदू R मधून जाणारी रेषा त्या वर्तुळांना अनुक्रमे बिंदू A व बिंदू B मध्ये छेदते. तर -

(1) रेख AP || रेख BQ हे सिद्ध करा.

(2) ΔAPR ~ ΔRQB हे सिद्ध करा.

(3) जर ∠PAR चे माप 35° असेल, तर ∠RQB चे माप ठरवा.

योग

उत्तर

केंद्र P आणि Q असलेली वर्तुळे परस्परांना बिंदू R मध्ये स्पर्श करतात.

∴ स्पर्शवर्तुळांच्या प्रमेयानुसार,

P-R-Q

(1) ΔPAR मध्ये,

रेख PA = रेख PR ..........[एकाच वर्तुळाच्या त्रिज्या]

∴ ∠PRA ≅ ∠PAR  ...(i) [समद्विभुज त्रिकोणाचे प्रमेय]

त्याचप्रमाणे, ΔQBR मध्ये,

रेख QR = रेख QB .........[एकाच वर्तुळाच्या त्रिज्या]

∴ ∠RBQ ≅ ∠QRB  .....(ii) [समद्विभुज त्रिकोणाचे प्रमेय]

परंतु, ∠PRA ≅ ∠QRB ......(iii) [विरुद्ध कोन]

∴ ∠PAR ≅ ∠RBQ  ....(iv) [(i) व (ii) वरून]

परंतु, वरील कोन AB ही छेदिका असता, रेख AP व रेख BQ वरील व्युत्क्रम कोन आहेत.

∴ रेख AP || रेख BQ  .....[व्युत्क्रम कोन कसोटी]

(2) ΔAPR व ΔRQB मध्ये,

∠PAR ≅ ∠QRB  ....[(i) व (iii) वरून]

∠APR ≅ ∠RQB .....[व्युत्क्रम कोन]

∴ ΔAPR ∼ ΔRQB  .....[समरूपतेच्या कोको कसोटीनुसार]

(3) ∠PAR = 35°  ....[पक्ष] 

∠RBQ = ∠PAR = 35° [(iv) वरून]

ΔRQB मध्ये,

∠RQB + ∠RBQ + ∠QRB = 180° ......[त्रिकोणाच्या कोनांच्या मापांची बेरीज 180° असते.]

∴ ∠RQB + ∠RBQ + ∠RBQ = 180°  ....[(ii) वरून]

∴ ∠RQB + 2∠RBQ = 180°

∴ ∠RQB + 2 × 35° = 180°

∴ ∠RQB + 70° = 180°

∴ ∠RQB  = 110°  

shaalaa.com
स्पर्शिका - त्रिज्या प्रमेय
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: वर्तुळ - सरावसंच 3.2 [पृष्ठ ५८]

APPEARS IN

बालभारती Geometry (Mathematics 2) [Marathi] 10 Standard SSC Maharashtra State Board
अध्याय 3 वर्तुळ
सरावसंच 3.2 | Q 4. | पृष्ठ ५८

संबंधित प्रश्न

सोबतच्या आकृतीत, केंद्र C असलेल्या वर्तुळाची त्रिज्या 6 सेमी आहे. रेषा AB या वर्तुळाला बिंदू A मध्ये स्पर्श करते. या माहितीवरून खालील प्रश्नांची उत्तरे द्या.

(1) ∠CAB चे माप किती अंश आहे? का?

(2) बिंदू C हा रेषा AB पासून किती अंतरावर आहे? का?

(3) जर d(A,B) = 6 सेमी, तर d(B,C) काढा.

(4) ∠ABC चे माप किती अंश आहे? का?


त्रिज्या 4.5 सेमी असलेल्या वर्तुळाच्या दोन स्पर्शिका परस्परांना समांतर आहेत. तर त्या स्पर्शिकांतील अंतर किती हे सकारण लिहा.


बिंदू O केंद्र असलेल्या वर्तुळाला रेषा l बिंदू P मध्ये स्पर्श करते. जर वर्तुळाची त्रिज्या 9 सेमी असेल, तर खालील प्रश्नांची उत्तरे लिहा.

(1) d(O, P) = किती? का?

(2) जर d(O, Q) = 8 सेमी असेल. तर बिंदू Q चे स्थान कोठे असेल?

(3) d(O, R)=15 सेमी असेल तर बिंदू R ची किती स्थाने रेषा l वर असतील? ते बिंदू P किती अंतरावर असतील?


आकृती मध्ये, केंद्र N असलेले वर्तुळ केंद्र M असणाऱ्या वर्तुळाला बिंदू T मध्ये स्पर्श करते. मोठ्या वर्तुळाची त्रिज्या लहान वर्तुळाला बिंदू S मध्ये स्पर्श करते. जर मोठ्या व लहान वर्तुळांच्या त्रिज्या अनुक्रमे 9 सेमी व 2.5 सेमी असतील तर खालील प्रश्नांची उत्तरे शोधा आणि त्यांवरून MS : SR हे गुणोत्तर काढा.

(1) MT = किती?

(2) MN = किती?

(3) ∠NSM = किती?

 


शेजारील आकृतीत, रेषा l ही केंद्र O असलेल्या वर्तुळाला बिंदू P मध्ये स्पर्श करते. बिंदू Q हा त्रिज्या OP चा मध्यबिंदू आहे. बिंदू Q ला सामावणारी जीवा RS || रेषा l. जर RS 12 सेमी असेल, तर वर्तुळाची त्रिज्या काढा. 


आकृती मध्ये, केंद्र C असलेल्या वर्तुळाचा रेख AB हा व्यास आहे. वर्तुळाची स्पर्शिका PQ वर्तुळाला बिंदू T मध्ये स्पर्श करते. रेख AP ⊥ रेषा PQ आणि रेख BQ ⊥ रेषा PQ. तर सिद्ध करा - रेख CP ≅ रेख CQ. 

 


वर्तुळाच्या बाह्यभागातील बिंदूपासून त्या वर्तुळाला काढलेले स्पर्शिकाखंड एकरूप असतात हे प्रमेय सिद्ध करण्यासाठी आकृतीच्या आधारे खालील कृती पूर्ण करा.

पक्ष: `square`

साध्य: `square`

सिद्धता:  

त्रिज्या AP आणि AQ काढून प्रमेयाची खाली दिलेली सिद्धता रिकाम्या जागा भरून पूर्ण करा.

ΔPAD आणि ΔQAD यांमध्ये,

बाजू PA ≅ बाजू `square` ...........[एकाच वर्तुळाच्या त्रिज्या]

बाजू AD ≅ बाजू AD ...............[`square`]

∠APD ≅ ∠AQD = 90°  ............[स्पर्शिका-त्रिज्या प्रमेय]

∴ ΔPAD ≅ ΔQAD ..................[`square`]

∴ बाजू DP ≅ बाजू DQ ...............[`square`]


आकृतीत रेख RM आणि रेख RN हे केंद्र O असलेल्या वर्तुळाचे स्पर्शिका खंड आहेत, तर रेख OR हा ∠MRN आणि ∠MON या दोन्ही कोनांचा दुभाजक आहे, हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.

सिद्धता:

ΔRMO आणि ΔRNO यांमध्ये,

∠RMO ≅ ∠RNO = 90° ...............[`square`]

कर्ण OR ≅ कर्ण OR …..............[`square`]

बाजू OM ≅ बाजू [`square`]  ..........…[एकाच वर्तुळाच्या त्रिज्या]

∴ ΔRMO ≅ ΔRNO ….......[`square`]

∠MOR ≅ ∠NOR

तसेच, ∠MRO ≅ [`square`] ......................[`square`]

∴ रेख OR ∠MRN आणि ∠MON या दोन्ही कोनांची दुभाजक आहे.


दिलेल्या आकृतीत, Q केंद्र असलेल्या वर्तुळाच्या रेख PM आणि PN स्पर्शिका आहेत. जर ∠MPN = 40°, तर ∠MQN चे माप काढा.


वरील आकृतीत, C केंद्र असलेल्या वर्तुळाला A या बाह्यबिंदूतून AB आणि AD हे स्पर्शिकाखंड काढले आहेत. तर सिद्ध करा:

∠A = `1/2` [m(कंस BYD) - m(कंस BXD)]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×