Advertisements
Advertisements
प्रश्न
आकृती मध्ये, केंद्र P आणि Q असलेली वर्तुळे परस्परांना बिंदू R मध्ये स्पर्श करतात. बिंदू R मधून जाणारी रेषा त्या वर्तुळांना अनुक्रमे बिंदू A व बिंदू B मध्ये छेदते. तर -
(1) रेख AP || रेख BQ हे सिद्ध करा.
(2) ΔAPR ~ ΔRQB हे सिद्ध करा.
(3) जर ∠PAR चे माप 35° असेल, तर ∠RQB चे माप ठरवा.
उत्तर
केंद्र P आणि Q असलेली वर्तुळे परस्परांना बिंदू R मध्ये स्पर्श करतात.
∴ स्पर्शवर्तुळांच्या प्रमेयानुसार,
P-R-Q
(1) ΔPAR मध्ये,
रेख PA = रेख PR ..........[एकाच वर्तुळाच्या त्रिज्या]
∴ ∠PRA ≅ ∠PAR ...(i) [समद्विभुज त्रिकोणाचे प्रमेय]
त्याचप्रमाणे, ΔQBR मध्ये,
रेख QR = रेख QB .........[एकाच वर्तुळाच्या त्रिज्या]
∴ ∠RBQ ≅ ∠QRB .....(ii) [समद्विभुज त्रिकोणाचे प्रमेय]
परंतु, ∠PRA ≅ ∠QRB ......(iii) [विरुद्ध कोन]
∴ ∠PAR ≅ ∠RBQ ....(iv) [(i) व (ii) वरून]
परंतु, वरील कोन AB ही छेदिका असता, रेख AP व रेख BQ वरील व्युत्क्रम कोन आहेत.
∴ रेख AP || रेख BQ .....[व्युत्क्रम कोन कसोटी]
(2) ΔAPR व ΔRQB मध्ये,
∠PAR ≅ ∠QRB ....[(i) व (iii) वरून]
∠APR ≅ ∠RQB .....[व्युत्क्रम कोन]
∴ ΔAPR ∼ ΔRQB .....[समरूपतेच्या कोको कसोटीनुसार]
(3) ∠PAR = 35° ....[पक्ष]
∠RBQ = ∠PAR = 35° [(iv) वरून]
ΔRQB मध्ये,
∠RQB + ∠RBQ + ∠QRB = 180° ......[त्रिकोणाच्या कोनांच्या मापांची बेरीज 180° असते.]
∴ ∠RQB + ∠RBQ + ∠RBQ = 180° ....[(ii) वरून]
∴ ∠RQB + 2∠RBQ = 180°
∴ ∠RQB + 2 × 35° = 180°
∴ ∠RQB + 70° = 180°
∴ ∠RQB = 110°
APPEARS IN
संबंधित प्रश्न
दिलेल्या आकृतीत, केंद्र O असलेल्या वर्तुळाच्या बाह्यभागातील R या बिंदूपासून काढलेले RM आणि RN हे स्पर्शिकाखंड वर्तुळाला बिंदू M आणि N मध्ये स्पर्श करतात. जर OR = 10 सेमी व वर्तुळाची त्रिज्या 5 सेमी असेल तर-
(1) प्रत्येक स्पर्शिकाखंडाची लांबी किती?
(2) ∠MRO चे माप किती?
(3) ∠MRN चे माप किती?
आकृती मध्ये, रेख EF हा व्यास आणि रेख DF हा स्पर्शिकाखंड आहे. वर्तुळाची त्रिज्या r आहे. तर सिद्ध करा - DE × GE = 4r2
आकृती मध्ये, बिंदू O वर्तुळकेंद्र आणि रेख AB व रेख AC हे स्पर्शिकाखंड आहेत. जर वर्तुळाची त्रिज्या r असेल आणि l(AB) = r असेल, तर `square`ABOC हा चौरस होतो, हे दाखवा.
शेजारील आकृतीत, रेषा l ही केंद्र O असलेल्या वर्तुळाला बिंदू P मध्ये स्पर्श करते. बिंदू Q हा त्रिज्या OP चा मध्यबिंदू आहे. बिंदू Q ला सामावणारी जीवा RS || रेषा l. जर RS 12 सेमी असेल, तर वर्तुळाची त्रिज्या काढा.
शेजारील आकृतीत, रेषा l ही केंद्र O असलेल्या वर्तुळाला बिंदू P मध्ये स्पर्श करते. बिंदू Q हा त्रिज्या OP चा मध्यबिंदू आहे. बिंदू Q ला सामावणारी जीवा RS || रेषा l. जर RS 12 सेमी असेल, तर वर्तुळाची त्रिज्या काढा.
शेजारील आकृतीत, रेषा l ही केंद्र O असलेल्या वर्तुळाला बिंदू P मध्ये स्पर्श करते. बिंदू Q हा त्रिज्या OP चा मध्यबिंदू आहे. बिंदू Q ला सामावणारी जीवा RS || रेषा l. जर RS 12 सेमी असेल, तर वर्तुळाची त्रिज्या काढा.
आकृती मध्ये, केंद्र C असलेल्या वर्तुळाचा रेख AB हा व्यास आहे. वर्तुळाची स्पर्शिका PQ वर्तुळाला बिंदू T मध्ये स्पर्श करते. रेख AP ⊥ रेषा PQ आणि रेख BQ ⊥ रेषा PQ. तर सिद्ध करा - रेख CP ≅ रेख CQ.
सोबतच्या आकृतीमध्ये, केंद्र C असलेल्या वर्तुळात रेषा AB या वर्तुळाला बिंदू A मध्ये स्पर्श करते, तर ∠CAB चे माप किती अंश आहे? का?
वर्तुळाच्या बाह्यभागातील बिंदूपासून त्या वर्तुळाला काढलेले स्पर्शिकाखंड एकरूप असतात हे प्रमेय सिद्ध करण्यासाठी आकृतीच्या आधारे खालील कृती पूर्ण करा.
पक्ष: `square`
साध्य: `square`
सिद्धता:
त्रिज्या AP आणि AQ काढून प्रमेयाची खाली दिलेली सिद्धता रिकाम्या जागा भरून पूर्ण करा.
ΔPAD आणि ΔQAD यांमध्ये,
बाजू PA ≅ बाजू `square` ...........[एकाच वर्तुळाच्या त्रिज्या]
बाजू AD ≅ बाजू AD ...............[`square`]
∠APD ≅ ∠AQD = 90° ............[स्पर्शिका-त्रिज्या प्रमेय]
∴ ΔPAD ≅ ΔQAD ..................[`square`]
∴ बाजू DP ≅ बाजू DQ ...............[`square`]
आकृतीमध्ये, O हा वर्तुळाचा केंद्रबिंदू आहे. रेषा AQ ही स्पर्शिका आहे. जर OP = 3 आणि m(कंस PM) = 120° असेल, तर AP ची लांबी काढा?