हिंदी
महाराष्ट्र स्टेट बोर्डएसएससी (मराठी माध्यम) १० वीं कक्षा

आकृती मध्ये रेख XY || रेख BC तर खालील पैकी कोणते विधान सत्य आहे? - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

प्रश्न

आकृती मध्ये रेख XY || रेख BC तर खालील पैकी कोणते विधान सत्य आहे?

विकल्प

  • `"AB"/"AC" = "AX"/"AY"`

  • `"AX"/"XB" = "AY"/"AC"`

  • `"AX"/"YC" = "AY"/"XB"`

  • `"AB"/"YC" = "AC"/"XB"`

MCQ

उत्तर

रेख XY || रेख BC तर सत्य विधान `"AB"/"AC" = "AX"/"AY"` हे आहे.

सपष्टीकरण :

ΔABC ∼ ΔAXY ....…[समरूपतेची कोको कसोटी]

∴ `"AB"/"AX" = "AC"/"AY"` ...[समरूप त्रिकोणांच्या संगत बाजू]

∴ `"AB"/"AC" = "AX"/"AY"`  .....[एकांतर क्रियेने] 

shaalaa.com
त्रिकोणांच्या समरूपतेच्या कसोट्या
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: समरूपता - संकीर्ण प्रश्नसंग्रह 1 [पृष्ठ २७]

APPEARS IN

बालभारती Geometry (Mathematics 2) [Marathi] 10 Standard SSC Maharashtra State Board
अध्याय 1 समरूपता
संकीर्ण प्रश्नसंग्रह 1 | Q 1. (5) | पृष्ठ २७

संबंधित प्रश्न

आकृती मधील त्रिकोण समरूप आहेत का? असतील तर कोणत्या कसोटीनुसार?


`square"ABCD"` हा समांतरभुज चौकोन आहे. बाजू BC वर E हा एक बिंदू आहे, रेषा DE ही किरण AB ला T बिंदूत छेदते. तर DE × BE = CE × TE दाखवा.

 


आकृतीत रेख AC व रेख BD परस्परांना P बिंदूत छेदतात आणि `"AP"/"CP" = "BP"/"DP"` तर सिद्ध करा, ΔABP ∼ ΔCDP.


जर ΔABC व ΔPQR मध्ये एका एकास एक संगतीत `"AB"/"QR" = "BC"/"PR" = "CA"/"PQ"` तर खालीलपैकी सत्य विधान कोणते?

 


आकृती मध्ये XY || बाजू AC. जर 2AX = 3BX आणि XY = 9 तर AC ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.

कृती : 2AX = 3BX 

∴ `"AX"/"BX" = square/square`

`("AX" + "BX")/"BX" = (square +  square)/square` ......(योग क्रिया करून)

`"AB"/"BX" = square/square` ......(I)

ΔBCA ~ ΔBYX .......(समरूपतेची `square` कसोटी)

∴ `"BA"/"BX" = "AC"/"XY"` ..........(समरूप त्रिकोणाच्या संगत बाजू)

∴ `square/square = "AC"/9`

∴ AC = `square` ..........(I) वरून


ΔABC मध्ये ∠A = 90°. `square`DEFG या चौरसाचे D व E हे शिरोबिंदू बाजू BC वर आहेत. बिंदू F हा बाजू AC वर आणि बिंदू G हा बाजू AB वर आहे. तर सिद्ध करा. DE2 = BD × EC (ΔGBD व ΔCFE हे समरूप दाखवा. GD = FE = DE याचा उपयोग करा.) 

 


∆DEF व ∆XYZ मध्ये `"DE"/"XY" = "FE"/"YZ"` आणि ∠E ≅ ∠Y, तर ∆DEF व ∆∆XYZ हे कोणत्या कसोटीनुसार समरूप होतील?


आकृतीचे निरीक्षण करून त्रिकोण समरूप आहेत का ते ठरवा. असल्यास समरूपता कसोटी लिहा. ∠P = 35°, ∠X = 35° व ∠Q = 60°, ∠Y = 60° 

 


वरील आकृतीत रेख AC आणि रेख BD परस्परांना P बिंदूत छेदतात. जर `"AP"/"CP" = "BP"/"DP"` तर ΔABP ∼ ΔCDP दाखवण्यासाठी खालील कृती पूर्ण करा.

कृती: ΔABP व ΔCDP मध्ये

`"AP"/"CP" = "BP"/"DP"  ....square`

∠APB ≅ `square` ...... विरुद्ध कोन

∴ `square` ∼ ΔCDP  ....... समरूपतेची `square` कसोटी.


□ABCD हा समांतरभुज चौकोन आहे. बिंदू P हा बाजू CD चा मध्यबिंदू आहे. रेख BP कर्ण AC ला बिंदू X मध्ये छेदतो, तर सिद्ध करा: 3AX = 2AC

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×