Advertisements
Advertisements
प्रश्न
`square"ABCD"` हा समांतरभुज चौकोन आहे. बाजू BC वर E हा एक बिंदू आहे, रेषा DE ही किरण AB ला T बिंदूत छेदते. तर DE × BE = CE × TE दाखवा.
उत्तर
`square"ABCD"` हा समांतरभुज चौकोन आहे. .......[पक्ष]
∴ बाजू AB || बाजू CD ......[समांतरभुज चौकोनाच्या समोरासमोरील बाजू]
∴ रेख AT || बाजू CD व रेख DT हि त्यांची छेदिका आहे............[A-B-T]
∴ ∠ATD ≅ ∠CDT ........[व्युत्क्रम कोन]
∴ ∠BTE ≅ ∠CDE .........(i) [A-B-T, T-E-D]
ΔBTE व ΔCDE मध्ये,
∠BTE ≅ ∠CDE .......[(i) वरून]
∠BET ≅ ∠CED ......[विरुद्ध कोन]
∴ ΔBTE ∼ ΔCDE ........[समरूपतेची कोको कसोटी]
∴ `"TE"/"DE" = "BE"/"CE"` ......[समरूप त्रिकोणांच्या संगत बाजू]
∴ DE × BE = CE × TE
APPEARS IN
संबंधित प्रश्न
आकृती मध्ये दाखवल्याप्रमाणे 8 मीटर व 4 मीटर उंचीचे दोन खांब सपाट जमिनीवर उभे आहेत. सूर्यप्रकाशाने लहान खांबाची सावली 6 मीटर पडते, तर त्याच वेळी मोठ्या खांबाची सावली किती लांबीची असेल?
समलंब चौकोन ABCD मध्ये, बाजू AB || बाजू DC कर्ण AC व कर्ण BD हे परस्परांना O बिंदूत छेदतात. AB = 20, DC = 6, OB = 15 तर OD काढा.
आकृतीत रेख AC व रेख BD परस्परांना P बिंदूत छेदतात आणि `"AP"/"CP" = "BP"/"DP"` तर सिद्ध करा, ΔABP ∼ ΔCDP.
जर ΔABC व ΔPQR मध्ये एका एकास एक संगतीत `"AB"/"QR" = "BC"/"PR" = "CA"/"PQ"` तर खालीलपैकी सत्य विधान कोणते?
जर ΔDEF व ΔPQR मध्ये, ∠D ≅ ∠Q, ∠R ≅ ∠E, तर खालीलपैकी असत्य विधान कोणते?
आकृतीचे निरीक्षण करून त्रिकोण समरूप आहेत का ते ठरवा. असल्यास समरूपता कसोटी लिहा. ∠P = 35°, ∠X = 35° व ∠Q = 60°, ∠Y = 60°
शेजारील आकृतीमध्ये, BP लंब AC, CQ लंब AB, A-P-C आणि A-Q-B, तर ∆APB व ∆AQC समरूप दाखवा.
∆APB व ∆AQC मध्ये,
∠APB = `square^circ` ......(i)
∠AQC = `square^circ` ......(ii)
∠APB ≅ ∠AQC …[(i) व (ii) वरून]
∠PAB ≅ ∠QAC .............` square`
∆APB ~ ∆AQC .............` square`
आकृतीमध्ये त्रिकोण ABC मध्ये बाजू BC वर D हा बिंदू असा आहे, की ∠BAC = ∠ADC. तर सिद्ध करा, की CA2 = CB × CD.
जर ΔABC ∼ ΔDEF आणि ∠A = 48°, तर ∠D = ______.
वरील आकृतीत, ΔABC मध्ये रेख XY || बाजू AC, जर 2AX = 3BX आणि XY = 9, तर AC ची किंमत काढा.