Advertisements
Advertisements
प्रश्न
आकृतीमध्ये त्रिकोण ABC मध्ये बाजू BC वर D हा बिंदू असा आहे, की ∠BAC = ∠ADC. तर सिद्ध करा, की CA2 = CB × CD.
उत्तर
∆BAC व ∆ADC मध्ये,
∠BAC ≅ ∠ADC ...............[पक्ष]
∠BCA ≅ ∠ACD ..............[सामाईक कोन]
∴ ∆BAC ∼ ∆ADC ............[समरूपतेची कोको कसोटी]
∴ `"CA"/"CD" = "CB"/"CA"` ..........[समरूप त्रिकोणांच्या संगत बाजू]
∴ CA × CA = CB × CD
∴ CA2 = CB × CD
APPEARS IN
संबंधित प्रश्न
आकृतीत Δ ABC मध्ये बाजू BC वर D हा बिंदू असा आहे, की ∠BAC = ∠ADC तर सिद्ध करा, CA2 = CB × CD.
जर ΔDEF व ΔPQR मध्ये, ∠D ≅ ∠Q, ∠R ≅ ∠E, तर खालीलपैकी असत्य विधान कोणते?
आकृती मध्ये रेख XY || रेख BC तर खालील पैकी कोणते विधान सत्य आहे?
`square`ABCD मध्ये रेख AD || रेख BC. कर्ण AC आणि कर्ण BD परस्परांना बिंदू P मध्ये छेदतात. तर दाखवा की `"AP"/"PD" = "PC"/"BP"`
ΔABC मध्ये ∠A = 90°. `square`DEFG या चौरसाचे D व E हे शिरोबिंदू बाजू BC वर आहेत. बिंदू F हा बाजू AC वर आणि बिंदू G हा बाजू AB वर आहे. तर सिद्ध करा. DE2 = BD × EC (ΔGBD व ΔCFE हे समरूप दाखवा. GD = FE = DE याचा उपयोग करा.)
आकृतीचे निरीक्षण करून त्रिकोण समरूप आहेत का ते ठरवा. असल्यास समरूपता कसोटी लिहा. ∠P = 35°, ∠X = 35° व ∠Q = 60°, ∠Y = 60°
आकृतीचे निरीक्षण करा. ∆ABC व ∆PQR कोणत्या कसोटीनुसार समरूप आहेत? कसोटीचे नाव लिहा.
आकृतीचे निरीक्षण करून कृती पूर्ण करा.
आकृतीमध्ये, ∠B = 75°, ∠D = 75°
∠B ≅ ______ .............[प्रत्येकी 75°]
∠C ≅ ∠C ..................[______]
∆ABC ~ ∆[______] ..............[______ समरूपता कसोटीनुसार]
जर ΔABC ∼ ΔDEF आणि ∠A = 48°, तर ∠D = ______.
वरील आकृतीत रेख AC आणि रेख BD परस्परांना P बिंदूत छेदतात. जर `"AP"/"CP" = "BP"/"DP"` तर ΔABP ∼ ΔCDP दाखवण्यासाठी खालील कृती पूर्ण करा.
कृती: ΔABP व ΔCDP मध्ये
`"AP"/"CP" = "BP"/"DP" ....square`
∠APB ≅ `square` ...... विरुद्ध कोन
∴ `square` ∼ ΔCDP ....... समरूपतेची `square` कसोटी.