Advertisements
Advertisements
प्रश्न
`square"ABCD"` हा समांतरभुज चौकोन आहे. बाजू BC वर E हा एक बिंदू आहे, रेषा DE ही किरण AB ला T बिंदूत छेदते. तर DE × BE = CE × TE दाखवा.
उत्तर
`square"ABCD"` हा समांतरभुज चौकोन आहे. .......[पक्ष]
∴ बाजू AB || बाजू CD ......[समांतरभुज चौकोनाच्या समोरासमोरील बाजू]
∴ रेख AT || बाजू CD व रेख DT हि त्यांची छेदिका आहे............[A-B-T]
∴ ∠ATD ≅ ∠CDT ........[व्युत्क्रम कोन]
∴ ∠BTE ≅ ∠CDE .........(i) [A-B-T, T-E-D]
ΔBTE व ΔCDE मध्ये,
∠BTE ≅ ∠CDE .......[(i) वरून]
∠BET ≅ ∠CED ......[विरुद्ध कोन]
∴ ΔBTE ∼ ΔCDE ........[समरूपतेची कोको कसोटी]
∴ `"TE"/"DE" = "BE"/"CE"` ......[समरूप त्रिकोणांच्या संगत बाजू]
∴ DE × BE = CE × TE
APPEARS IN
संबंधित प्रश्न
आकृती मधील त्रिकोण समरूप आहेत का? असतील तर कोणत्या कसोटीनुसार?
आकृतीत समलंब चौकोन PQRS मध्ये, बाजू PQ || बाजू SR, AR = 5AP, AS = 5AQ तर सिद्ध करा, SR = 5PQ.
समलंब चौकोन ABCD मध्ये, बाजू AB || बाजू DC कर्ण AC व कर्ण BD हे परस्परांना O बिंदूत छेदतात. AB = 20, DC = 6, OB = 15 तर OD काढा.
जर ΔDEF व ΔPQR मध्ये, ∠D ≅ ∠Q, ∠R ≅ ∠E, तर खालीलपैकी असत्य विधान कोणते?
आकृती मध्ये रेख XY || रेख BC तर खालील पैकी कोणते विधान सत्य आहे?
आकृतीचे निरीक्षण करा. ∆ABC व ∆PQR कोणत्या कसोटीनुसार समरूप आहेत? कसोटीचे नाव लिहा.
आकृतीमध्ये रेख AC व रेख BD परस्परांना P बिंदूत छेदतात आणि `"AP"/"PC" = "BP"/"PD"`, तर सिद्ध करा ∆ABP ~ ∆CDP.
चौकोन ABCD मध्ये बाजू AD || BC, कर्ण AC आणि BD परस्परांना P बिंदूत छेदतात, तर सिद्ध करा, की `"AP"/"PD" = "PC"/"BP".`

समलंब चौकोन ABCD मध्ये बाजू AB || बाजू CD चौकोनाचे कर्ण हे एकमेकांना बिंदू P मध्ये छेदतात.
त्यावरून खालील प्रश्नांची उत्तरे लिहा:
- वरील दिलेल्या माहितीवरून आकृती काढा.
- व्युत्क्रम कोन व विरुद्ध कोनांची प्रत्येकी एक जोडी लिहा.
- समरूप त्रिकोणांची नावे समरूपतेच्या कसोटीसह लिहा.