Advertisements
Advertisements
प्रश्न
आकृतीमध्ये रेख AC व रेख BD परस्परांना P बिंदूत छेदतात आणि `"AP"/"PC" = "BP"/"PD"`, तर सिद्ध करा ∆ABP ~ ∆CDP.
उत्तर
∆ABP व ∆CDP मध्ये, `"AP"/"PC" = "BP"/"PD"` .....[पक्ष]
∠APB ≅ ∠CPD ...............[विरुद्ध कोन]
∴ ∆ABP ∼ ∆CDP ....................[समरूपतेची बाकोबा कसोटी]
APPEARS IN
संबंधित प्रश्न
आकृती मधील त्रिकोण समरूप आहेत का? असतील तर कोणत्या कसोटीनुसार?
`square`ABCD मध्ये रेख AD || रेख BC. कर्ण AC आणि कर्ण BD परस्परांना बिंदू P मध्ये छेदतात. तर दाखवा की `"AP"/"PD" = "PC"/"BP"`
आकृती मध्ये XY || बाजू AC. जर 2AX = 3BX आणि XY = 9 तर AC ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती : 2AX = 3BX
∴ `"AX"/"BX" = square/square`
`("AX" + "BX")/"BX" = (square + square)/square` ......(योग क्रिया करून)
`"AB"/"BX" = square/square` ......(I)
ΔBCA ~ ΔBYX .......(समरूपतेची `square` कसोटी)
∴ `"BA"/"BX" = "AC"/"XY"` ..........(समरूप त्रिकोणाच्या संगत बाजू)
∴ `square/square = "AC"/9`
∴ AC = `square` ..........(I) वरून
ΔABC मध्ये ∠A = 90°. `square`DEFG या चौरसाचे D व E हे शिरोबिंदू बाजू BC वर आहेत. बिंदू F हा बाजू AC वर आणि बिंदू G हा बाजू AB वर आहे. तर सिद्ध करा. DE2 = BD × EC (ΔGBD व ΔCFE हे समरूप दाखवा. GD = FE = DE याचा उपयोग करा.)
∆DEF व ∆XYZ मध्ये `"DE"/"XY" = "FE"/"YZ"` आणि ∠E ≅ ∠Y, तर ∆DEF व ∆∆XYZ हे कोणत्या कसोटीनुसार समरूप होतील?
आकृतीचे निरीक्षण करून त्रिकोण समरूप आहेत का ते ठरवा. असल्यास समरूपता कसोटी लिहा. ∠P = 35°, ∠X = 35° व ∠Q = 60°, ∠Y = 60°
आकृतीमध्ये समलंब चौकोन PQRS मध्ये बाजू PQ || बाजू SR, AR = 5 AP, तर सिद्ध करा, SR = 5 PQ.
आकृतीमध्ये त्रिकोण ABC मध्ये बाजू BC वर D हा बिंदू असा आहे, की ∠BAC = ∠ADC. तर सिद्ध करा, की CA2 = CB × CD.
चौकोन ABCD मध्ये बाजू AD || BC, कर्ण AC आणि BD परस्परांना P बिंदूत छेदतात, तर सिद्ध करा, की `"AP"/"PD" = "PC"/"BP".`
वरील आकृतीत, ΔABC मध्ये रेख XY || बाजू AC, जर 2AX = 3BX आणि XY = 9, तर AC ची किंमत काढा.