मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (मराठी माध्यम) इयत्ता १० वी

आकृती मधील त्रिकोण समरूप आहेत का? असतील तर कोणत्या कसोटीनुसार? - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

प्रश्न

आकृती मधील त्रिकोण समरूप आहेत का? असतील तर कोणत्या कसोटीनुसार?

बेरीज

उत्तर

ΔPQR व ΔLMN मध्ये,

`"PQ"/"LM" = 6/3 = 2/1` .........(i)

`"QR"/"MN" = 8/4 = 2/1` .........(ii)

`"PR"/"LN" = 10/5 = 2/1` ..........(iii)

∴ `"PQ"/"LM" = "QR"/"MN" = "PR"/"LN"` .......[(i), (ii) व (iii) वरून]

∴ ΔPQR ∼ ΔLMN ................[समरूपतेची बाबाबा कसोटी]

shaalaa.com
त्रिकोणांच्या समरूपतेच्या कसोट्या
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: समरूपता - सरावसंच 1.3 [पृष्ठ २१]

APPEARS IN

बालभारती Geometry (Mathematics 2) [Marathi] 10 Standard SSC Maharashtra State Board
पाठ 1 समरूपता
सरावसंच 1.3 | Q 2. | पृष्ठ २१

संबंधित प्रश्‍न

आकृती मध्ये ∠ABC = 75°, ∠EDC =75° तर कोणते दोन त्रिकोण कोणत्या कसोटीनुसार समरूप आहेत? त्यांची समरूपता योग्य एकास एक संगतीत लिहा.


आकृती मध्ये दाखवल्याप्रमाणे 8 मीटर व 4 मीटर उंचीचे दोन खांब सपाट जमिनीवर उभे आहेत. सूर्यप्रकाशाने लहान खांबाची सावली 6 मीटर पडते, तर त्याच वेळी मोठ्या खांबाची सावली किती लांबीची असेल?


आकृतीत समलंब चौकोन PQRS मध्ये, बाजू PQ || बाजू SR, AR = 5AP, AS = 5AQ तर सिद्ध करा, SR = 5PQ.


`square"ABCD"` हा समांतरभुज चौकोन आहे. बाजू BC वर E हा एक बिंदू आहे, रेषा DE ही किरण AB ला T बिंदूत छेदते. तर DE × BE = CE × TE दाखवा.

 


आकृती मध्ये XY || बाजू AC. जर 2AX = 3BX आणि XY = 9 तर AC ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.

कृती : 2AX = 3BX 

∴ `"AX"/"BX" = square/square`

`("AX" + "BX")/"BX" = (square +  square)/square` ......(योग क्रिया करून)

`"AB"/"BX" = square/square` ......(I)

ΔBCA ~ ΔBYX .......(समरूपतेची `square` कसोटी)

∴ `"BA"/"BX" = "AC"/"XY"` ..........(समरूप त्रिकोणाच्या संगत बाजू)

∴ `square/square = "AC"/9`

∴ AC = `square` ..........(I) वरून


खालीलपैकी कोणती कसोटी समरूपतेची नाही?


आकृतीमध्ये रेख AC व रेख BD परस्परांना P बिंदूत छेदतात आणि `"AP"/"PC" = "BP"/"PD"`, तर सिद्ध करा ∆ABP ~ ∆CDP.

 


आकृतीमध्ये समलंब चौकोन PQRS मध्ये बाजू PQ || बाजू SR, AR = 5 AP, तर सिद्ध करा, SR = 5 PQ. 

 


आकृतीमध्ये त्रिकोण ABC मध्ये बाजू BC वर D हा बिंदू असा आहे, की ∠BAC = ∠ADC. तर सिद्ध करा, की CA2 = CB × CD. 

  


वरील आकृतीत रेख AC आणि रेख BD परस्परांना P बिंदूत छेदतात. जर `"AP"/"CP" = "BP"/"DP"` तर ΔABP ∼ ΔCDP दाखवण्यासाठी खालील कृती पूर्ण करा.

कृती: ΔABP व ΔCDP मध्ये

`"AP"/"CP" = "BP"/"DP"  ....square`

∠APB ≅ `square` ...... विरुद्ध कोन

∴ `square` ∼ ΔCDP  ....... समरूपतेची `square` कसोटी.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×