हिंदी
महाराष्ट्र स्टेट बोर्डएसएससी (मराठी माध्यम) १० वीं कक्षा

आकृतीमध्ये रेख AC व रेख BD परस्परांना P बिंदूत छेदतात आणि APPC=BPPD, तर सिद्ध करा ∆ABP ~ ∆CDP. - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

प्रश्न

आकृतीमध्ये रेख AC व रेख BD परस्परांना P बिंदूत छेदतात आणि `"AP"/"PC" = "BP"/"PD"`, तर सिद्ध करा ∆ABP ~ ∆CDP.

 

योग

उत्तर

∆ABP व ∆CDP मध्ये, `"AP"/"PC" = "BP"/"PD"` .....[पक्ष]

∠APB ≅ ∠CPD ...............[विरुद्ध कोन]

∴ ∆ABP ∼ ∆CDP ....................[समरूपतेची बाकोबा कसोटी]

shaalaa.com
त्रिकोणांच्या समरूपतेच्या कसोट्या
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: समरुपता - Q.२ (ब)

संबंधित प्रश्न

आकृती मध्ये ∠ABC = 75°, ∠EDC =75° तर कोणते दोन त्रिकोण कोणत्या कसोटीनुसार समरूप आहेत? त्यांची समरूपता योग्य एकास एक संगतीत लिहा.


आकृती मधील त्रिकोण समरूप आहेत का? असतील तर कोणत्या कसोटीनुसार?


`square"ABCD"` हा समांतरभुज चौकोन आहे. बाजू BC वर E हा एक बिंदू आहे, रेषा DE ही किरण AB ला T बिंदूत छेदते. तर DE × BE = CE × TE दाखवा.

 


आकृती मध्ये रेख PQ || रेख DE, A (Δ PQF) = 20 एकक, जर PF = 2 DP आहे, तर A(`square"DPQE"`) काढण्यासाठी खालील कृती पूर्ण करा.

A(Δ PQF) = 20 एकक, PF = 2 DP, DP = x मानू. ∴ PF = 2x

DF = DP + `square` = `square` + `square` = 3x

Δ FDE व Δ FPQ मध्ये

∠ FDE ≅ ∠`square` (संगत कोन)

∠ FED ≅ ∠`square` (संगत कोन)

∴ Δ FDE ∼ Δ FPQ .............(कोको कसोटी)

∴ `("A"(Δ"FDE"))/("A"(Δ"FPQ")) = square/square = ((3"x")^2)/((2"x")^2) = 9/4`

A(Δ FDE) = `9/4` × A(Δ FPQ ) = `9/4 xx square = square`

A(`square` DPQE) = A(Δ FDE) - A(Δ FPQ)

= `square - square`

= `square`


जर ΔDEF व ΔPQR मध्ये, ∠D ≅ ∠Q, ∠R ≅ ∠E, तर खालीलपैकी असत्य विधान कोणते?


खालीलपैकी कोणती कसोटी समरूपतेची नाही?


∆DEF व ∆XYZ मध्ये `"DE"/"XY" = "FE"/"YZ"` आणि ∠E ≅ ∠Y, तर ∆DEF व ∆∆XYZ हे कोणत्या कसोटीनुसार समरूप होतील?


शेजारील आकृतीमध्ये, BP लंब AC, CQ लंब AB, A-P-C आणि A-Q-B, तर ∆APB व ∆AQC समरूप दाखवा.

∆APB व ∆AQC मध्ये,

∠APB = `square^circ` ......(i)

∠AQC = `square^circ` ......(ii)

∠APB ≅ ∠AQC …[(i) व (ii) वरून]

∠PAB ≅ ∠QAC .............` square`

∆APB ~ ∆AQC .............` square` 


वरील आकृतीत रेख AC आणि रेख BD परस्परांना P बिंदूत छेदतात. जर `"AP"/"CP" = "BP"/"DP"` तर ΔABP ∼ ΔCDP दाखवण्यासाठी खालील कृती पूर्ण करा.

कृती: ΔABP व ΔCDP मध्ये

`"AP"/"CP" = "BP"/"DP"  ....square`

∠APB ≅ `square` ...... विरुद्ध कोन

∴ `square` ∼ ΔCDP  ....... समरूपतेची `square` कसोटी.


□ABCD हा समांतरभुज चौकोन आहे. बिंदू P हा बाजू CD चा मध्यबिंदू आहे. रेख BP कर्ण AC ला बिंदू X मध्ये छेदतो, तर सिद्ध करा: 3AX = 2AC

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×