मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (मराठी माध्यम) इयत्ता १० वी

□ABCD हा समांतरभुज चौकोन आहे. बिंदू P हा बाजू CD चा मध्यबिंदू आहे. रेख BP कर्ण AC ला बिंदू X मध्ये छेदतो, तर सिद्ध करा: 3AX = 2AC - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

प्रश्न

□ABCD हा समांतरभुज चौकोन आहे. बिंदू P हा बाजू CD चा मध्यबिंदू आहे. रेख BP कर्ण AC ला बिंदू X मध्ये छेदतो, तर सिद्ध करा: 3AX = 2AC
सिद्धांत

उत्तर

□ABCD हा समांतरभुज चौकोन आहे.  ...[पक्ष]

∴ बाजू AB || बाजू CD  ...[समांतरभुज चौकोनाच्या संमुख बाजू]

∴ बाजू AB || बाजू CP ...[C - P - D]

व BP ही त्यांची छेदिका आहे.

∴ ∠CPB ≅ ∠ABP  ...[व्युत्क्रम कोन]

∴ ∠CPX ≅ ∠ABX  ...(i)[P - X - B]

ΔPXC व ΔBXA मध्ये,

∠PXC ≅ ∠BXA   ...[परस्पर विरुद्ध कोन]

∠CPX ≅ ∠ABX  ...[(i) वरून]

∴ ΔPXC ∼ ΔBXA  ...[कोको कसोटीनुसार]

∴ `(CX)/(AX) = (XP)/(XB) = (AB)/(CP)` ...(ii)[समरूप त्रिकोणांच्या संगत बाजू]

लक्षात घ्या,

रेख AB ≅ रेख CD  ...(iii) [∵ □ ABCD हा समांतरभुज चौकोन आहे.]

रेख CP = `1/2` रेख CD  ...(iv) [P हा बाजू CD चा मध्यबिंदू आहे.]

∴ रेख CP = `1/2` रेख AB  ...(v) [(iii) व (iv)]

∴ `(CX)/(AX) = (XP)/(XB) = (AP)/(CB) = 2/1`  ...[(ii) व (v) वरून]

∴ `(CX)/(AX) = 2/1`

∴ `(CX + AX)/(AX) = (2 + 1)/2`  ...[योग क्रियेने]

∴ `(AC)/(AX) = 3/2`

∴ 3AX = 2AC हे सिद्ध होते.

shaalaa.com
त्रिकोणांच्या समरूपतेच्या कसोट्या
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2021-2022 (March) Set 1

संबंधित प्रश्‍न

आकृती मध्ये ∠ABC = 75°, ∠EDC =75° तर कोणते दोन त्रिकोण कोणत्या कसोटीनुसार समरूप आहेत? त्यांची समरूपता योग्य एकास एक संगतीत लिहा.


आकृती मधील त्रिकोण समरूप आहेत का? असतील तर कोणत्या कसोटीनुसार?


आकृती मध्ये दाखवल्याप्रमाणे 8 मीटर व 4 मीटर उंचीचे दोन खांब सपाट जमिनीवर उभे आहेत. सूर्यप्रकाशाने लहान खांबाची सावली 6 मीटर पडते, तर त्याच वेळी मोठ्या खांबाची सावली किती लांबीची असेल?


आकृतीत समलंब चौकोन PQRS मध्ये, बाजू PQ || बाजू SR, AR = 5AP, AS = 5AQ तर सिद्ध करा, SR = 5PQ.


आकृतीत रेख AC व रेख BD परस्परांना P बिंदूत छेदतात आणि `"AP"/"CP" = "BP"/"DP"` तर सिद्ध करा, ΔABP ∼ ΔCDP.


आकृती मध्ये XY || बाजू AC. जर 2AX = 3BX आणि XY = 9 तर AC ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.

कृती : 2AX = 3BX 

∴ `"AX"/"BX" = square/square`

`("AX" + "BX")/"BX" = (square +  square)/square` ......(योग क्रिया करून)

`"AB"/"BX" = square/square` ......(I)

ΔBCA ~ ΔBYX .......(समरूपतेची `square` कसोटी)

∴ `"BA"/"BX" = "AC"/"XY"` ..........(समरूप त्रिकोणाच्या संगत बाजू)

∴ `square/square = "AC"/9`

∴ AC = `square` ..........(I) वरून


ΔABC मध्ये ∠A = 90°. `square`DEFG या चौरसाचे D व E हे शिरोबिंदू बाजू BC वर आहेत. बिंदू F हा बाजू AC वर आणि बिंदू G हा बाजू AB वर आहे. तर सिद्ध करा. DE2 = BD × EC (ΔGBD व ΔCFE हे समरूप दाखवा. GD = FE = DE याचा उपयोग करा.) 

 


आकृतीचे निरीक्षण करून त्रिकोण समरूप आहेत का ते ठरवा. असल्यास समरूपता कसोटी लिहा. ∠P = 35°, ∠X = 35° व ∠Q = 60°, ∠Y = 60° 

 


आकृतीचे निरीक्षण करून कृती पूर्ण करा.

आकृतीमध्ये, ∠B = 75°, ∠D = 75°

∠B ≅ ______ .............[प्रत्येकी 75°]

∠C ≅ ∠C ..................[______]

∆ABC ~ ∆[______]  ..............[______ समरूपता कसोटीनुसार] 

 


आकृतीमध्ये रेख AC व रेख BD परस्परांना P बिंदूत छेदतात आणि `"AP"/"PC" = "BP"/"PD"`, तर सिद्ध करा ∆ABP ~ ∆CDP.

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×