Advertisements
Advertisements
प्रश्न
आकृति में, यदि AC = BD है, तो सिद्ध कीजिए कि AB = CD है।
उत्तर
चित्र से यह देखा जा सकता है कि
AC = AB + BC
BD = BC + CD
यह दिया गया है कि AC = BD
AB + BC = BC + CD ...(1)
यूक्लिड के अभिगृहीत के अनुसार, जब बराबरों को बराबरों में से घटाया जाए, तो शेषफल भी बराबर होते हैं।
समीकरण (1) से BC घटाने पर, हम प्राप्त करते हैं
AB + BC − BC = BC + CD − BC
AB = CD
APPEARS IN
संबंधित प्रश्न
निम्नलिखित पद की परिभाषा दीजिए। क्या इनके लिए कुछ ऐसे पद हैं, जिन्हें परिभाषित करने की आवश्यकता है? वे क्या हैं और आप इन्हें कैसे परिभाषित कर पाएँगे?
रेखाखंड
यदि दो बिंदुओं A और B के बीच एक बिंदु C ऐसा स्थित है कि AC = BC है, C रेखाखंड AB का एक मध्य-बिंदु कहलाता है। सिद्ध कीजिए कि एक रेखाखंड का एक और केवल एक ही मध्य-बिंदु होता है।
थेल्स निम्नलिखित देश का वासी था :
एक पृष्ठ के किनारे वक्र होते हैं।
यदि एक राशि B एक अन्य राशि A का एक भाग है, तो A को B और एक अन्य राशि C के योग के रूप में लिखा जा सकता है।
कथन “प्रत्येक रेखा l और उस पर न स्थित प्रत्येक बिंदु P के लिए, एक अद्वितीय रेखा का अस्तित्व है जो P से होकर जाती है और l के समांतर है” प्लेफेयर अभिगृहीत कहलाता है।
निम्नलिखित प्रश्न को उपयुक्त यूक्लिड की अभिगृहीत का प्रयोग करते हुए, हल कीजिए :
निम्नलिखित आकृति में, ∠1 = ∠3 और ∠2 = ∠4 है। दर्शाइए कि ∠A = ∠C है।
निम्नलिखित प्रश्न को उपयुक्त यूक्लिड की अभिगृहीत का प्रयोग करते हुए, हल कीजिए :
निम्नलिखित आकृति में, यदि OX = `1/2` XY, PX = `1/2` XZ और OX = PX हो, तो दर्शाइए कि XY = XZ है।
निम्नलिखित कथन को पढ़िए :
एक समबाहु त्रिभुज तीन रेखाखंडों से बना एक बहुभुज है जिनमें से दो रेखाखंड तीसरे रेखाखंड के बराबर हैं तथा इसका प्रत्येक कोण 60° का है।
इस परिभाषा में, उन पदों को परिभाषित कीजिए जिन्हें आप आवश्यक समझते हैं। क्या इसमें कोई अपरिभाषित पद है? क्या आप इसका औचित्य दे सकते हैं कि एक समबाहु त्रिभुज के सभी कोण और सभी भुजाएँ बराबर होती हैं।
निम्नलिखित कथनों को अभिगृहीत माना गया है :
- यदि दो रेखाएँ परस्पर प्रतिच्छेद करें तो शीर्षाभिमुख कोण बराबर नहीं होते हैं।
- यदि एक किरण एक रेखा पर खड़ी हो तो इस प्रकार प्राप्त दोनों आसन्न कोणों का योग 180° होता है।
क्या अभिगृहीतों का यह निकाय संगत है?